Looking for a similar answer, essay, or assessment help services?

Simply fill out the order form with your paper’s instructions in a few easy steps. This quick process ensures you’ll be matched with an expert writer who
Can meet your papers' specific grading rubric needs. Find the best write my essay assistance for your assignments- Affordable, plagiarism-free, and on time!

Posted: August 13th, 2023

Types of Shock Waves in Divergent Nozzle

This lab experiment was based on determining the various kinds of shock waves produced in a convergent-divergent nozzle by altering the effect of the pressure ratio respectively. The experiment was conducted using computational fluid dynamics and the results produced were compared with the theoretical results to present the accuracy of the experiment. Further, the three different kinds of shock were also demonstrated and discussed.

Introduction

A Convergent-Divergent nozzle is a tube that is used for accelerating the fluid to the required velocity. Since it is a commonly used geometry, it requires highly accurate analysis in order to optimize fluid flow. Using computer oriented softwares such as computational fluid dynamics to analyze supersonic and subsonic flows in the convergent-divergent nozzle can yield in high precision and faster results.

Which Citation Styles Can You Handle?

We get a lot of “Can you do MLA or APA?”—and yes, we can! Our writers ace every style—APA, MLA, Turabian, you name it. Tell us your preference, and we’ll format it flawlessly.

Convergent-Divergent nozzles are applicable for a variety of industrial applications, one of which includes the use of biological organisms. The function of the nozzle is to produce a supersonic air stream for optimizing the temperature in order to make it harmless to the biological organisms. [1]

Another engineering application that utilizes converging-diverging nozzles is the industrial steam turbine. The nozzles are used as accelerators with compressible fluids e.g. water to increase their velocity to attain velocities that are supersonic before hitting the turbine blades.

This lab experiment is based on analyzing the various types of shock waves created in the convergent-divergent nozzle. The inlet and outlet pressures are varied to display the curved, straight and lambda shock.

Theory

‘The flow through a converging-diverging nozzle is one of the benchmark problems used for modeling the compressible flow through computational fluid dynamics (CFD). Occurrence of shock in the flow field displays one of the most prominent effects of compressibility over fluid flow.’ [3]

Are Writing Services Legal?

Totally! They’re a legit resource for sample papers to guide your work. Use them to learn structure, boost skills, and ace your grades—ethical and within the rules.

Shock waves are a type of discontinuity. Across a shock, there is a significant increase in pressure, temperature and density of the flow. Shock waves depend on Mach number both upstream and downstream of the flow. When the upstream Mach number is subsonic (Ma < 1), the downstream Mach number is supersonic (Ma > 1). The pressure ratio of the fluid flow can be determined using the below mentioned equation. Figure 1 displays the schematic of the convergent-divergent nozzle used for conducting the experiment.

The dimensions are as follows: (L) = 0.6m

(r1) = 0.1m

What’s the Price for a Paper?

Starts at $10/page for undergrad, up to $21 for pro-level. Deadlines (3 hours to 14 days) and add-ons like VIP support adjust the cost. Discounts kick in at $500+—save more with big orders!

(r2) = 0.12m

Using equation (1) the pressure ratio can be determined theoretically based on the Mach No. and the ratio of the specific gas constant.

……………………………………. (1)

Taking a general case from Table 1 as an example, the inlet and outlet pressures were 220,000 Pa and 100,000 Pa correspondingly. Hence, following the initialization of the boundary conditions, the pressure contour was plotted and the pressure ratio was computed to be 0.102 as displayed in equation (2). Using equation 1, similar pressure ratio is recorded by using the Mach. No. respectively. Table 1 displays the summarized results obtained. The ratio of specific gas constant is taken as 0.14.

Is My Privacy Protected?

100%! We encrypt everything—your details stay secret. Papers are custom, original, and yours alone, so no one will ever know you used us.

…………….……….. (2)

Equipment

Computational fluid dynamics is an advanced technology used to simulate the flow using simultaneous fluid properties inside a given control volume. It uses computer based modeling to analyze the fluid flow. The volume occupied by the fluid is divided into discrete cells in order to produce highly accurate results.

CFD’s can be used in a wide variety of applications which are usually complicated to work on. Such examples include blood flow inside the veins and the heart of a human body and the simulation of the air flow over a cyclist in order to increase the overall efficiency. ‘CFD is attractive to industry since it is more cost-effective than physical testing.’ [2]

The CFD package used for conducting the experiment was Ansys 12.1. The mesh model of the convergent-divergent nozzle was the input to the FLUENT software inbuilt inside Ansys 12.1. The following section outlines in depth about the procedure and the results discussed from the experiment.

Is AI Involved in Writing?

Nope—all human, all the time. Our writers are pros with real degrees, crafting unique papers with expertise AI can’t replicate, checked for originality.

Procedure

The procedure for performing CFD analysis on convergent-divergent nozzles is described below:

Read the mesh file from the file menu.

Check and scale the mesh as per requirement from the mesh menu.

Display the grid from the display menu and change the Colors option to Color by ID.

Why Are You the Best for Research?

Our writers are degree-holding pros who tackle any topic with skill. We ensure quality with top tools and offer revisions—perfect papers, even under pressure.

Define the models and enable the k-epsilon option from the define menu.

Define the material as ideal gas from the define menu.

Define the operating conditions and change the operating pressure to zero from the define menu.

Define the boundary conditions and set the inlet pressure and temperature as per requirement from the define menu.

Who Writes My Assignments?

Experts with degrees—many rocking Master’s or higher—who’ve crushed our rigorous tests in their fields and academic writing. They’re student-savvy pros, ready to nail your essay with precision, blending teamwork with you to match your vision perfectly. Whether it’s a tricky topic or a tight deadline, they’ve got the skills to make it shine.

Repeat the previous to set the boundary conditions at outlet respectively.

Solve and initialize the mesh from the solve menu.

Solve and monitor the residual from the solve menu. Select print and plot options.

Save the case file from the file menu.

Will My Paper Be Unique?

Guaranteed—100%! We write every piece from scratch—no AI, no copying—just fresh, well-researched work with proper citations, crafted by real experts. You can grab a plagiarism report to see it’s 95%+ original, giving you total peace of mind it’s one-of-a-kind and ready to impress.

Solve the calculation by setting the number of iterations as per requirement.

Save the data file from the file menu.

Compute and display filled contours of static pressure from the display menu.

Compute and display velocity vectors from the display menu. Set the Scale and Skip to 5.

Can You Use Any Citation Format?

Yep—APA, Chicago, Harvard, MLA, Turabian, you name it! Our writers customize every detail to fit your assignment’s needs, ensuring it meets academic standards down to the last footnote or bibliography entry. They’re pros at making your paper look sharp and compliant, no matter the style guide.

Observe the flow and zoom the view for better display.

Repeat the above process with a different set of inlet and outlet pressures to draw comparisons.

Results

Displayed below are the series of results of shock waves based on pressure contours and velocity vectors that were obtained by altering the pressure ratio. The results in Table 1 are based on turbulent fluid flow for an ideal gas.

6. Discussions

The relationship between the inlet pressure and the pressure ratio is displayed in Figure 7. As observed from the graph, as the inlet pressure increases, the pressure ratio decreases, thus confirming the inverse relationship between the 2 quantities. Further discussions are based on the shock observation from the varying pressure ratio. The three different types of shock are displayed in figures 2, 3 and 4.

Can I Change My Order Details?

For sure—you’re not locked in! Chat with your writer anytime through our handy system to update instructions, tweak the focus, or toss in new specifics, and they’ll adjust on the fly, even if they’re mid-draft. It’s all about keeping your paper exactly how you want it, hassle-free.

Figure 2 displays a straight shock as the light blue color-coded contour is a roughly straight line prior to the dark blue contour. This is observed when the inlet pressure is 300,000 Pa and the outlet pressure is 100,000 Pa.

With reference to figure 3, a lambda shock is observed as the light blue color-coded contour is in the shape of lambda. The yellow contour shows the area of higher pressure than the light-blue contour. The inlet pressure was 250,000 Pa and the outlet pressure remains unchanged.

Figure 4 displays a curve shock. This is confirmed as the pressure color-coded light blue contour is curved as it approaches the boundary of the nozzle after the dark-blue contour. This was recorded at an inlet pressure of 220,000 Pa and the outlet pressure remained constant throughout the experiment at 100,000 Pa respectively.

In addition, figure 8 displays the error percentage between the theoretical and experimental pressure ratio for each case. The highest error of 4% was produced at the inlet pressure of 220,000 Pa. The minimum error percentage recorded were for inlet pressures of 120,000 Pa and 250,000 Pa respectively.

How Do I Order a Paper?

It’s a breeze—submit your order online with a few clicks, then track progress with drafts as your writer brings it to life. Once it’s ready, download it from your account, review it, and release payment only when you’re totally satisfied—easy, affordable help whenever you need it. Plus, you can reach out to support 24/7 if you’ve got questions along the way!

Conclusion

The above mentioned results and discussions confirm that the experiment conducted using CFD produced highly accurate results when compared with the theoretical study.

Further, the experiment also demonstrated the ability of using computational fluid dynamics to demonstrate various complicated fluid flow parameters, in this case being the shock production in a convergent-divergent nozzle.

Tags: Academic Paper Assistance, Affordable College Homework, APA Citation Assignment Help, Assignment Help Australia

Order|Paper Discounts

Why Choose Essay Bishops?

You Want The Best Grades and That’s What We Deliver

Top Essay Writers

Our top essay writers are handpicked for their degree qualification, talent and freelance know-how. Each one brings deep expertise in their chosen subjects and a solid track record in academic writing.

Affordable Prices

We offer the lowest possible pricing for each research paper while still providing the best writers;no compromise on quality. Our costs are fair and reasonable to college students compared to other custom writing services.

100% Plagiarism-Free

You’ll never get a paper from us with plagiarism or that robotic AI feel. We carefully research, write, cite and check every final draft before sending it your way.