Looking for a similar answer, essay, or assessment help services?

Simply fill out the order form with your paper’s instructions in a few easy steps. This quick process ensures you’ll be matched with an expert writer who
Can meet your papers' specific grading rubric needs. Find the best write my essay assistance for your assignments- Affordable, plagiarism-free, and on time!

Posted: August 19th, 2022

The Effective Application of BIM on Constructability Problems

THE EFFECTIVE APPLICATION OF BIM ON CONSTRUCTABILITY PROBLEMS

Abstract

Constructability is an integral part of construction as it defines how we build. Part of designing a building must consider how it will be built. Over the years building techniques have improved to allow us to build bigger and bigger. Therefore, improving the constructability of our designs will allow us to build more efficiently, using less material, less time and less people. With advancements in computer technology the construction industry is changing in the way it designs. In 2011 the Government Construction Strategy mandated the use of Level 2 BIM on all public sector projects by 2016 (Digital Build Britain (2015)). Advancements such as these encourage further improvements to design. One such improvement would be the investigation of how applicable BIM is to reducing constructability problems.

Which Citation Styles Can You Handle?

We get a lot of “Can you do MLA or APA?”—and yes, we can! Our writers ace every style—APA, MLA, Turabian, you name it. Tell us your preference, and we’ll format it flawlessly.

This study has classified and analysed constructability issues on a case study project in Oxford using data from RFIs on the project. Through secondary research it has then assessed how applicable BIM can be in addressing these issues, commenting on both the benefits and limitations of BIM.

Table of Contents

Abstract………………………………………………………

Acknowledgements………………………………………………

Table of Contents……………………………………………….

Are Writing Services Legal?

Totally! They’re a legit resource for sample papers to guide your work. Use them to learn structure, boost skills, and ace your grades—ethical and within the rules.

1. Introduction……………………………………………..

2. Literature Review…………………………………………

2.1. A brief history of BIM……………………………….

What’s the Price for a Paper?

Starts at $10/page for undergrad, up to $21 for pro-level. Deadlines (3 hours to 14 days) and add-ons like VIP support adjust the cost. Discounts kick in at $500+—save more with big orders!

2.2. Constructability…………………………………..

2.2.1. A process approach………………………………

2.2.2. Case Study and Survey Research methods……………..

2.2.3. Prefabrication and Modularisation…………………….

Is My Privacy Protected?

100%! We encrypt everything—your details stay secret. Papers are custom, original, and yours alone, so no one will ever know you used us.

2.3. BIM on Constructability……………………………..

2.3.1. 3-D Modelling…………………………………..

2.3.2. 4-D modelling…………………………………..

2.4. Conclusion………………………………………

Is AI Involved in Writing?

Nope—all human, all the time. Our writers are pros with real degrees, crafting unique papers with expertise AI can’t replicate, checked for originality.

3. Research Method…………………………………………

3.1. The Case Study…………………………………..

3.2. RFI Categorisation…………………………………

3.3. BIM Applicability………………………………….

Why Are You the Best for Research?

Our writers are degree-holding pros who tackle any topic with skill. We ensure quality with top tools and offer revisions—perfect papers, even under pressure.

4. Findings………………………………………………..

4.1. Initial Breakdown………………………………….

4.2. Constructability Categorisation………………………..

4.3. RFI Origins………………………………………

Who Writes My Assignments?

Experts with degrees—many rocking Master’s or higher—who’ve crushed our rigorous tests in their fields and academic writing. They’re student-savvy pros, ready to nail your essay with precision, blending teamwork with you to match your vision perfectly. Whether it’s a tricky topic or a tight deadline, they’ve got the skills to make it shine.

4.4. Design Coordination……………………………….

4.5. BIM Applicability Matrix……………………………..

5. Discussion………………………………………………

5.1. Constructability vs Project Impacts……………………..

Will My Paper Be Unique?

Guaranteed—100%! We write every piece from scratch—no AI, no copying—just fresh, well-researched work with proper citations, crafted by real experts. You can grab a plagiarism report to see it’s 95%+ original, giving you total peace of mind it’s one-of-a-kind and ready to impress.

5.2. BIM as a Solution………………………………….

5.3. Limitations of the Study……………………………..

6. Concluding Remarks and Recommendations…………………….

7. References………………………………………………

Can You Use Any Citation Format?

Yep—APA, Chicago, Harvard, MLA, Turabian, you name it! Our writers customize every detail to fit your assignment’s needs, ensuring it meets academic standards down to the last footnote or bibliography entry. They’re pros at making your paper look sharp and compliant, no matter the style guide.

8. Appendices……………………………………………..

1.   Introduction

Constructability has long caused problems in the construction industry as a result of a knowledge gap between the design and construction stages of a project (Fischer, M & Tatum, 1997). Improving constructability of designs has been the subject of much research in the last two decades, with particular emphasis placed on providing construction information within the design stage (Odeh, A.M. (1992)). A reason for this is that constructability is a major factor to the success of construction projects (CII (1993)). Problems occur when designers do not consider how components of buildings will be constructed or installed on site. Constructability problems have existed as long as construction has; Ancient Egyptians considered constructability of the pyramids at the design stage to plan the huge movements of stone to its peak (Edwards, J. F. (2003)).

Not all constructability issues are of this scale, smaller constructability issues often pass through the design stage unnoticed, causing delays and additional costs to the project (Fischer, M & Tatum, 1997). Recent advances in the UK health and safety industry have contributed to more constructability issues which previously did not exist. For example, the use of 950mm edge protection is mandatory for all leading edges on a construction project (HSE, 2008). This may prevent a worker from accessing ‘hard to reach’ areas. Before this safety requirement legislation, workers could dangerously gain access to such areas to complete the works. Today, additional design considerations are required to avoid causing overall project delays through inaccessibility.

Improving the design to eliminate or mitigate against these issues should be a focus of the construction industry in order to reduce project delays and unforeseen costs. The introduction of Building Information Modelling (BIM) in the last twenty years has given a new means to solving constructability problems. BIM can be defined as ‘A process for creating and managing information on a construction project across the project lifecycle. One of the key outputs of this process is the Building Information Model, the digital description of every aspect of the built asset. This model draws on information assembled collaboratively and updated at key stages of a project. Creating a digital Building Information Model enables those who interact with the building to optimize their actions, resulting in a greater whole life value for the asset.’ (NBS, 2017). In application, BIM is used to support better design through improved clarity and presentation of information. As part of this improvement BIM can help address some constructability problems through features such as clash detection and visualisation (Codinhoto et al 2011).

Can I Change My Order Details?

For sure—you’re not locked in! Chat with your writer anytime through our handy system to update instructions, tweak the focus, or toss in new specifics, and they’ll adjust on the fly, even if they’re mid-draft. It’s all about keeping your paper exactly how you want it, hassle-free.

The aims of this study were to identify constructability issues on the Big Data Institute, Headington, Oxford. This was completed through the compilation and analysis of all ‘requests for information’ (RFIs) on the project. RFIs were chosen as they lie within close proximity to the later design stages and construction stage of the project. In total there were three hundred and thirty-seven RFIs, not all of which were constructability related. Through secondary research, a comprehensive literature review was used to define different constructability categories. RFIs were sorted into these categories and then analysed using additional classifications. The second aim of this research was to identify the features and functions of BIM that currently benefit construction projects. This was completed through secondary research and the use of a literature review to identify said features of BIM. Finally, the study aimed to understand how applicable these identified features and functions are to the constructability problems identified in the original analysis.

2.   Literature Review

2.1.         A brief history of BIM

The origins of Building Information Modelling (BIM) are unclear with so many technological advances having been made in the last fifty years. BIM was theorised as early as 1962 by Douglas C. Engelbart who envisioned a design where the following occurs, “When he has finished, the revised scene appears on the screen. A structure is taking shape. He examines it, adjusts it…”, this vision has evolved into a similar reality. Since, there have been many advances in technology within construction, one of the most notable has been Computer Aided Design (CAD). Whilst BIM is heavily involved with CAD it goes far beyond 3-D modelling, as explained in Section 1.

Much of the literature reviewed doesn’t specifically refer to BIM, this is due to the evolution of computer usage and the associated names given to computational software in construction. BIM along with CAD and other related computational terms are inexplicably linked within the reviewed literature in terms of the impacts they have in the construction industry. Figure 1: UK BIM maturity model, (http://bim-level2.org/globalassets/pdfs/bim-maturity-model.pdf ).

The last twenty years have seen BIM evolve hugely in its capabilities, with little to suggest it slowing down. Due to the vast number of influencing factors the evolutionary path of BIM is somewhat unclear. Figure 1 can be used to aid the description of how BIM has evolved, depicting the BIM levels of maturity. Taking an alternative, financial approach to assessing BIMs growth, analysing share prices of the principle BIM providers gives a good indication of the BIM industries growth. The main providers of BIM software are Autodesk and Nemetschek, between they own: Revit, AutoCAD, Graphisoft and ArchiCad. Both Autodesk and Nemetschek have seen a sustained rise in their stock price over the last ten years as how n in Figures 2 and 3.

How Do I Order a Paper?

It’s a breeze—submit your order online with a few clicks, then track progress with drafts as your writer brings it to life. Once it’s ready, download it from your account, review it, and release payment only when you’re totally satisfied—easy, affordable help whenever you need it. Plus, you can reach out to support 24/7 if you’ve got questions along the way!

Figure 2: Autodesk stock price over the last ten years. (Appendix B).

Data sourced from: www.nasdaq.com

 

How Quick Can You Write?

Need it fast? We can whip up a top-quality paper in 24 hours—fully researched and polished, no corners cut. Just pick your deadline when you order, and we’ll hustle to make it happen, even for those nail-biting, last-minute turnarounds you didn’t see coming.

Figure 3: Nemetschek stock price over the last ten years. (Appendix B).

Data sourced from: https://www.nemetschek.com/en/investor-relations/stock/stock-charts/

This growth supports the success and growth of BIM as an industry. Additionally, the growing stock values of these companies correlates to an increased investment in the product, which in this case is BIM software (amongst other software packages). These investments will help BIM develop further and have the potential to unlock yet more applications.

As BIM continues to evolve, research interests have grown, as shown in Figures 2 and 3. This systematic literature review was undertaken to review related research and identify the key issues and potential gaps within it. Google Scholar was used to conduct this research which consists of one hundred and ten journal articles and theses. Five different searching criteria were used to cover the differing aspects of the research field, Table 1 shows the search criteria and the corresponding number of articles identified and reviewed.

Can You Handle Tough Topics?

Absolutely—bring it on! Our writers, many with advanced degrees like Master’s or PhDs, thrive on challenges and dive deep into any subject, from obscure history to cutting-edge science. They’ll craft a standout paper with thorough research and clear writing, tailored to wow your professor.

Table 1: Search Criteria for Google Scholar Literature Review

Word combination used Number of entries Number of entries recorded
BIM Constructability in Construction 2600 40
Disassembly using BIM 3400 24
Sustainability through BIM in Construction 13500 6
Constructability and Disassembly with BIM 123 22
BIM and Constructability design 2540 8

A set of qualitative parameters were used to eliminate irrelevant articles beyond the original searching criteria, these included:

  • No inclusion of BIM with little reference to constructability.
  • Avoid BIM awareness studies or BIM vs No BIM project studies.
  • Avoid the use of BIM in education or teaching.
  • Avoid BIM in past, present, future comparisons as a construction tool.
  • Avoid studies with little reference to deconstruction or decommissioning in relation to BIM.
  • Only use articles between 2000 and 2017 unless specific to constructability.
  • When search results show less than 1-2 related articles per page move onto the next word combination (standard 10 results per page).

After tabulating the results of the literature review, many different categories within the research field were identified. Most of these categories related back to BIM (see Figure 4), however the secondary links between articles were weak, often with only BIM in common. This resulted in the breadth of field being quite wide. Articles were further divided into sub-categories, often linking to main categories with irregular transverse links. The main categories identified by the literature review were as follows:

  1. Constructability
  2. Modular Construction / Prefabrication
  3. Deconstruction
  4. BIM implementation
  5. Sustainability

These main categories have many articles relating to each of them, most of which link to another main category and or sub-category. Sub-categories were identified within the literature, which aided the classification of many articles and provided greater detail into different areas within the field. Figure 4 highlights these subcategories and provides a visual aid into the links between articles and the most popular categories researched.

The literature review focused first on constructability, and the on the benefits of BIM to constructability. The categories of sustainability and BIM implementation were dependent on constructability or deconstructability to feature and could therefore be incorporated within them. Modular and prefabrication construction techniques were linked to constructability with some also referring to deconstruction. For this reason, they too were incorporated into the constructability section. Many authors focus on constructability over deconstruction in the literature reviewed, a reason for this is that the search results in Table 1 feature constructability far more heavily, to keep within the limitations of this study, thus maintaining an appropriate scope. The benefits of BIM to constructability were then reviewed using much of the literature previously mentioned. This was done to re-examine on the literature reviewed in order to support the second part of the research: How applicable is BIM to the identified constructability issues.

How Do You Match Professor Expectations?

We follow your rubric to a T—structure, evidence, tone. Editors refine it, ensuring it’s polished and ready to impress your prof.

Figure 4: A visual representation of the reviewed literature and identified topic areas.

Many of the research methods used across the range of literature reviewed were not viable to base this research on due to a variety of factors. Much of the literature reviewed focused on specific areas of construction, for example Dossick, C. S. & Neff, G. (2009) focuses specifically on MEP in the implementation of BIM. In total there were nine examples of material specific literature identified similar to Dossick. Many other authors focused on specifics such as building types, areas within the project lifecycle and project team member roles (See Table 2). As a result of this, numerous constructability issues found in these articles couldn’t be applied as a general constructability principle to guide this study’s research method. Authors taking a broader research approach identified constructability issues that apply to all construction projects, for example Jergeas, G., & Put, J. V. D. (2001) used a survey approach and identified issues that reoccur in many other papers. This broader approach allowed better comparisons to be drawn between different authors, facilitating a wider understanding of the common constructability problems identified across projects. These problems range from construction methods, to trade coordination and to different types of building.

Table 2: Different focus groups of recorded constructability literature (Appendix C)

How Do You Edit My Work?

Send us your draft and goals—our editors enhance clarity, fix errors, and keep your style. You’ll get a pro-level paper fast.

Frequency Focus of study
8 Material specific (e.g. Steel design, Concrete formwork design, etc.)
9 Area of construction (e.g. MEP or Scaffold design, etc.)
2 Project Team Role (e.g. Construction manager)
5 Type of building (e.g. High-rise building, retrofitting, etc.)

2.2.         Constructability

Extracting constructability related literature from the one hundred and ten articles in the overall literature review led to sixteen articles being identified, the earliest dating back to 1987 by Clyde B. Tatum. This early paper focuses on constructability in the conceptual planning stages of a project. Tatum introduces three issues of constructability, developing the project plan, laying out the site and the construction methods. These issues are further explained within the paper however they are limited in their complexity due to their age, nonetheless, the overlying ideas behind the issues still remain in construction today. For example, planning works usually follow guidelines provided by a company template, especially on larger construction projects.

The specific issues mentioned by Tatum have since evolved into modern day equivalents as the building industry has evolved. For example, Tatum suggested having increased construction flexibility to maintain productivity when an unexpected restraint occurred. This was considered a constructability issue. Today many of these unexpected restraints have been removed (such as delays due to weather have been reduced through all-weather installation systems and insulated façade/cladding panels), which reduces the benefits of a flexible schedule. On top of this modern day construction is comprised of more specialist trades, this provides an increase in available works to be completed, as long as the critical path is not restricted. Tatum’s paper makes no mention of computer involvement in any aspect of construction, this vastly changes the problems faced and the possible solutions we can use to overcome them.

In 1997 Tatum published another paper focusing on the constructability of reinforced concrete (RC) structures [4]. This paper explores constructability issues across the entire construction process compared to just conceptual planning phases of the project. Despite focusing on RC, Tatum identifies many integral issues associated with constructability. This includes the requirement for construction knowledge in the design stage of the project to eliminate common problems that are unforeseeable to a designer with no practical experience. Tatum also comments on how some issues can have a general rules applied to them, for example “use lap splices wherever possible”, such rules can be modelled into a computer program, facilitating BIM integration. Tatum begins to introduce the basic ideas behind the use of computers to improve constructability, on a basic level. Inclusions such as companywide standards of constructability and statements such as: ‘designers will start a project from a higher level’ promote improved constructability standards. He also begins to introduce the ideas of storing constructability knowledge to be used on future projects (compared to relearning or relying on individual experiences). Overall, Tatum’s 1997 paper highlights many features of constructability that are still an issue in modern day construction, for example, improving communication between construction personnel and designers. Additionally, he also comments on how corporate constructability handbooks are overlooked in the heat of design development, a case in point being could be integrated into a computer model that prevents designers from ‘overlooking’ such handbooks.

As the literature reviewed moves closer to the present day, the use of computers becomes more and more apparent. The increase in computer usage and application of use created a new area for research methods. This literature review compares varying computational research approaches to tackle constructability issues in the field of BIM.

2.2.1.    A process approach

Following this rise in computer use a construction review process was developed in March 2000 for the transportation sector. Anderson, S. D. et al used Integrated DEFinition modelling (IDEF0) alongside a process approach to review constructability at different stages of the project lifecycle. An IDEF0 is a modelling methodology used by many governments and businesses to model actions, decisions and activities of a system (Varun Grover, William J. Kettinger (2000)). This technique was applied to a constructability system, and tested to investigate its effectiveness. By breaking down the construction process into its constituent parts it could be analysed, identifying where inputs, constraints and outputs lay within the process. Constructability issues were identified through the use of an expert team. As the transportation sector often has to work under constant operability circumstances a key factor for construction is to reduce time on site, for example, UK network rail replaced a bridge overnight when trains were not running to avoid affecting the services the following day (Network Rail 2017). Projects like these require immense planning and coordination to ensure success, otherwise significant costs are incurred. Constructability is a huge player in transport projects as unforeseen circumstances and projects delays have to be minimised and anticipated thoroughly.

Can You Brainstorm Topics?

Yep! We’ll suggest ideas tailored to your field—engaging and manageable. Pick one, and we’ll build it into a killer paper.

Anderson (2000) identifies seven constructability criteria within each of the following phases, planning, design and construction from his survey results. These are divided into individual tasks in a companion paper (Fisher, D. J., Anderson, S. D., & Rahman, S. P. (2000)). This research method is very different to Tatum (1997), whilst the obvious difference is the computer usage, the actual approach does have some similarities. Firstly, the constructability areas are similar, breaking it down from planning, designing and construction. At this point the studies begin to differ, where Tatum (1997) identifies constructability issues such as ‘lack of coordination between designers and construction experts’, Anderson (2000) locates areas in the project cycle where issues should be resolved but lacks a definitive solution. Sub phases such as ‘identify major constructability issues’ relies heavily on expert knowledge to know and identify those issues. Anderson (2000) doesn’t raise the issue of designers needing to communicate better with construction experts to improve constructability. This lack of communication can be seen in both papers. Finally, despite the heavy use of computing technology and a process approach there is no mention of BIM as at the time it was still in the early stages of its development.

In 2012 Wang, L., & Leite, F explored the implementation of BIM at the design stage using a process approach. This is very similar to the for-mentioned Anderson (2000) paper in which there are many similarities despite being twelve years apart. Both Anderson (2000) and Wang (2012) use localised knowledge of project team members to identify information required for a constructability review process (CRP). A limitation of this is that using only a small number of people reduces the exposure to constructability issues across a range of projects. Nevertheless, the majority of constructability issues are likely to be picked up. The most common issues will be picked up due to their higher frequency. Further to this, such issues tend to be more significant because an accumulation of problems causes a greater overall effect.

Wang (2012) focuses on the design stage of the project, where change have the least impact on cost (See Figure 5). This focus allowed Wang (2012) to explore examples of constructability issues on her case study project such as differences in field and model tolerances. Addressing these issues in the design stage by understanding that model space is more refined than actual space led to the avoidance of plant collisions on the project. Anderson (2000) tested the CRP on two projects however there is no evidence of success of either models.

Many progressions have been made in BIM between the two authors papers above, with many sub categories listed in Anderson (2000) assumed to be included within the BIM implementation of Wang’s (2012) more recent CRP. This concludes the literature reviewed for a process approach addressing constructability issues on projects. Many of the ideas from these authors overlap to the more common case studies and survey approaches taken by the subsequent authors.

Figure 5: An adaptation of the RIBA stages of work to the ability to influence construction cost over time on a generic project. RIBA component source: https://www.ribaplanofwork.com.

2.2.2.    Case Study and Survey Research methods

The following authors used a range of research approaches to tackle constructability issues that encompass the use of BIM. What they all have in common is that they identify specific problems in more depth than process approaches that focus on a CRP derived from lessons learned. It looks at issues individually and begins categorising them, assessing potential mitigation techniques, either by a general rule, or other means. Because this approach identifies issues first, it shows a better evolution of the constructability problems faced, and how the industry has tried to solve them over time. Many then assess whether BIM can be a more effective approach to solve such issues, utilising constructability knowledge from expert’s industry-wise, to deliver a more efficient construction project.

Do You Offer Fast Edits?

Yes! Need a quick fix? Our editors can polish your paper in hours—perfect for tight deadlines and top grades.

Jergeas, G., & Put, J. V. D. used a survey method in 2001 to evaluate the effectiveness of potential constructability principles against realised principles. The survey sample used consisted of construction industry professionals in high level management. Their opinions are considered a reliable source of data as they represent different stakeholders across the industry. The survey indicated that the largest gap between potential and realised principles was in ‘advanced computer technology’, supporting Tatum’s (1997) paper. This paper highlights the benefits of using computer technology to improve construction across the industry, showing that in the fifteen years that separates these papers the industry did not maximise its potential to capitalise on available technology. Interestingly, the rest of the paper analyses the findings and concludes that a number of other principal groupings were more important to tackle. These focused largely on ‘a willing to change’, current practises and collaboration between firms to better deliver a project. Problems such as these still exist today, however with BIM’s potential uses it could be an aid to encourage change in the industry and reduce discrepancies between firms allowing them to better collaborate Jergeas (2001). One of the key points that Jergeas (2001) raises is that there are too many barriers to entry to maximise computer technology in construction, and hence there is a large gap between realised benefits and potential benefits. This gap refers back to his earlier point of ‘a willingness to change’ and barriers to entry being a key learning point of the study.

The theme of change was also picked up on by W. O’Brian et al (2012) through the benefits of 3-D and 4-D CAD models on a project. O’Brian (2012) focused on projects that have tried to change through the inclusion of such models and outlines the benefits achieved through their use. The key benefits O’Brian (2012) outlined were improvements to communication and visualisation, these reduced incompatibility between trades. Many of these points are highlighted by Jergeas (2001) as problems to address, while O’Brian (2012) commented on how 4-D CAD can improve a CRP through saving time and automating easy processes within them. O’Brian doesn’t comment on how the 3-D and 4-D models are integrated to the project team and how well they are supported by project team members. No drawbacks to using the models are outlined by O’Brian. Such drawbacks would include substantial costs from the initial software purchase and training of personnel to update drawings and maintain models (Bryde, D., et al (2013)). There is no indication of why this study was completed, or who it was funded by, this leaves the study open to potential bias.

Many authors use case studies for their research, and while the issues addressed are often project specific the overall constructability issues remain the same. For example, the 2012 study by W. O’Brian et al assessed the benefits of Three- and Four-dimensional computer aided design model applications on transportation projects. The study [105] identified constructability issues such as communication and visualisation that BIM can positively influence. These issues align with much of the literature previously mentioned.

Being focused on transportation involves more planning than for standard projects (Network Rail). This is a likely reason as to why more papers involving BIM (focusing often on planning stages) are focused on transportation. Many of the benefits and points made about the inclusion of BIM/CAD can be applied to general areas of construction despite the additional focus on transport.

A case study in 2013 by R Leicht looks into automating the CRP process through the use of BIM. Many benefits outlined by O’Brian (2012) apply to some of the issues mentioned by Leicht, for example ‘material of wall pier needs to be changed due to access restraint’ could be addressed more easily through the use of 3-D models to better visualise 3-D space. Leicht (2013) categorises his constructability issues differently to most other authors as they do not conform to the RIBA project stages. He categorises constructability issues by their fault, e.g. Design Omission. The majority of categories are independent of the RIBA stages, while ‘Unforeseen Conditions’ lies almost exclusively within the construction stage. This analysis included information fed from projects where multiple solutions are possible depending on the stage the project is in. It also does not identify when constructability issues are identified, which can have a large effect on their implications for the project (See Figure 3).

Leicht used one case study for his research and collated twenty constructability issues. This sample size was unlikely to encompass all generic constructability issues; however, the most common issues aligned with previous authors and so is deemed reasonable. This is the first paper reviewed to comment on a BIM implementation method which uses a rule based approach. Whilst this is simple it still eliminates many errors and can perform simple checks on the design to improve constructability.

Can You Start With an Outline?

Sure! We’ll sketch an outline for your approval first, ensuring the paper’s direction is spot-on before we write.

His following paper published in 2014 aimed to address the problems mentioned by authors such as Jergeas (2001) and O’Brian (2012), bridging the gap between construction knowledge and design. This leads to the question: can BIM utilise constructability knowledge to guide designers and alert them to constructability issues only experts would have? Leicht (2013) tried to address this issue using simple functions, for example, an IF function to check the height of retaining walls meets a minimum value.

A common knock on effect of improving processes such as constructability is improved efficiency (Tatum 1997). When designing improved efficiency, sustainability often follows through a reduction in waste and time savings. S. H. A. Seoud (2013) investigated how constructability can be used to reduce project waste. During the investigation many constructability issues, such as the lack of involvement of construction personnel in the design stage were identified. Seoud puts this down to the type of building contract, recommending a design and build contract for maximum collaboration. Seoud (2013) also commented on how clients should be made more aware of the benefits of constructability can have on time and money. If clients were aware of this they are more likely to include it in the project budget, which feeds through to construction firms who in turn, can incorporate this into their budget. Similarly, to O’Brian (2012) the additional costs to implement good constructability processes were not mentioned. The proposed solution was not tested further to assess its effectiveness in improving constructability on a project.

2.2.3.    Prefabrication and Modularisation

Moving away from traditional building methods, prefabrication and modularisation offer new ideas about how to construct. Being a more recent method of construction and assembled in factory conditions, CAD is heavily used to achieve higher tolerances than traditional methods (Gunawardena, (2013)).

This was further explored in 2009 by J. Neelamkavil to examine the amount the construction industry can pre-fabricate to improve tolerances and buildability. This raised a new problem; that the benefits of using BIM vary hugely between trades. Significant costs to implement BIM properly are incurred as it fundamentally changes the way buildings are designed (Bryde, D., et al (2013)). Automation of certain building processes varies trade to trade as many trades such as carpenters work off hand-drawings. Therefore, some trade companies resisted change as skills, such as hand drawings, became redundant (Jergeas (2001)). Other changes such as the increased collaboration between trades in order to coordinate modular components of a building could also prove challenging (Neelamkavil (2009)).

In 2013 T Gunawardena developed a model for optimising prefabricated modular buildings. Interestingly he did not touch on the issues that many prior authors have, such as the coordination of trades and the challenges faced to ‘change’ the industry. Instead he focused on the likely problems faced. From the study it was not clear what kind of contractors carried out the construction works, making it hard to understand how contractors collaborated on the project, or if only a single contractor was used. Many of the ideas put forward by Gunawardena (2013) claim benefits such as reduced waste, reduced construction time, re-usability options, and better quality due to factory assembly conditions.

2.3.         BIM on Constructability

The benefits of BIM on constructability have been touched on by some previously mentioned authors, however this section investigated authors who focused on this topic in more detail. Ricardo Codinhoto et al (2011) aimed to investigate the BIM implementation process from an owner’s perspective and to devise guidelines for them to implement BIM in the Facilities Management (FM) of the building. Within the report, BIM deliverables are outlined, these include visualisation and decision making, 4-D construction programming and clash detection to name a few. These deliverables were organised by the RIBA Plan of Works (RIBA 2011). It could still be seen how BIM implementation varied across different stages of the project, with far more input in the design stages. The benefits of BIM to constructability were clearly outlined by Codinhoto et al (2011). The BIM deliverables were most effective in the design stages; resolving issues that had potential to become constructability related problems.

Interestingly, Codinhoto et al (2011) also discussed ‘mirages’ of BIM. These outlined some key limitations of BIM that the industry currently faces. One example was that the design process suffers from intrinsic problems that have to be managed. The use of BIM can help facilitate improved management, however the industry must adapt to utilise the benefits of BIM to improve the overall design process. Limitations such as these are interesting because they link back to constructability issues outlined by authors such as Tatum (1987), showing that some constructability issues have not been addressed in the twenty-four years between publications. Moreover, they can’t be tackled through the sole use of BIM, a change in how the industry operates must also occur to address such complex issues.

Focusing more on constructability, Wang, L., & Leite, F (2012) identified information required for a constructability review and then used IDEF0 models to implement BIM through the use of clash detection software. Weekly meetings were held to manage identified clashes and upload revised models to be checked the following week. Whilst this process required a significant amount of management time, it uses BIM to help identify constructability issues on the project. The main BIM benefits outlined by Wang & Leite (2012) are similar to those listed by Codinhoto (2011), with many 3-D modelling benefits mentioned. Benefits such as better visualisation, improved design coordination, and clash detection software helped bring potential constructability issues to the attention of the relevant management.

Can You Add Charts or Stats?

Definitely! Our writers can include data analysis or visuals—charts, graphs—making your paper sharp and evidence-rich.

2.3.1.    3-D Modelling

The benefits of 3-D modelling are significant and diverse across the entire construction industry; however, this research focuses on the benefits it can provide to improving constructability problems. Firstly, 3-D models allow a better visualisation of space for complex areas, and also provide support for individuals who have less experience of reading 2-D drawings. A result of this is an increased opportunity for more members of the project team to spot mistakes. Additionally, it is far clearer to spot potential clashes, small spaces or undersigned spaces within the design. These benefits are gained just by having a 3-D model, with no additional benefits of BIM.

There are many additional benefits provided by BIM to address constructability issues. Features such as clash detection provide a degree of automation to identifying constructability issues and provoke design meetings to mitigate the identified problems. Other features are more passive and include improved design co-ordination through better integration of drawings and specifications. Features like this aid the reduction of design discrepancies and also aid the for mentioned benefit of visualisation without having extra information that improves the model from a simple 3-D CAD drawing to a BIM model.

Another feature of BIM 3-D modelling is the inclusion of the different models, these provide additional clarity and detail for the design team and facilitate further visual analysis from the design team to identify problems. These additional features can simply be categorised as part of improved visualisation, however the additional clarity and detail provided by a BIM model vastly improves upon a solo 3-D model.

2.3.2.    4-D modelling

The benefits of 4-D modelling include all of the features covered in 3-D modelling with some additional benefits. The fourth dimension is the incorporation of time. This allows a 3-D model to become a construction sequence. A key benefit of this is that the construction process can be frozen at any time. This provides a different view and provides even more opportunity for the design team to identify problems within it (O’Brian, (2013)). This can also be used to model logistical movements on site and optimise deliveries and site storage/ laydown areas.

2.4.         Conclusion

This literature review has looked at the identification and categorisation of constructability issues across a wide range of projects and how BIM has been implemented with the aim to address such issues. Constructability issues have existed in construction from its early beginnings. This literature review has identified the key constructability issues facing the construction industry, across a range of projects and construction methods. The key principles many authors commented on included a lack of construction knowledge in the design stage of the project, and poor design coordination between sub-contractors. Some authors classified constructability issues, the majority of which were located within the design stage of the project. These classifications help identify ways in which BIM can be implemented to address them (R. Leicht et al (2013)).

Two authors that focused on the implementation of BIM used this method, firstly their research identified and grouped constructability issues into logical categories. The research methods then divided. Wang (2012) used IDEF0 modelling to implement BIM to the constructability review process while Leicht (2013) assessed each constructability category individually. He ascertained how, if at all BIM could be used to improve the associated constructability problems. This approach identifies problems that have passed through the design stage unnoticed. Constructability issues should be dealt with in the design stage as they incur less cost, compared to in the construction phase, Leicht’s (2013) method identified common constructability issues that passed design stage and therefore incurred the largest cost for the project. Both Wang (2012) and Leicht’s (2013) studies had limitations to the implementations of BIM. Other authors such as Codinhoto (2011) outlined the limitations BIM still has to improve constructability without changing how we design and utilise tools such as BIM.

Other categories identified within the literature included Sustainability and Modularisation/ Prefabrication. Sustainability features throughout the publications as resultant benefit from improved constructability and BIM implementation. As time has progressed the use of computers has grown more and more in conjunction with the drive to be more and more sustainable in our designs. For this reason, the involvement of BIM has increased with time in the publications reviewed.

3.   Research Method

3.1.         The Case Study

The project used for this research was based in Headington, Oxford, and was called the Big Data Institute. The two-year project was a Design and Build contract. The building itself is a high-spec office building, built for the University of Oxford with a value approximately £35 million. The project included a 3-D model for the plantroom roof while the remainder of the building was detailed using 2-D drawings and other traditional methods. Three hundred and thirty-seven RFIs were raised on the project control collaboration software and were organised by the document controller at Mace.

3.2.         RFI Categorisation

The research method used in this study is partly derived from the literature reviewed above. The first part of this study used previously identified constructability categories to identify constructability related issues in RFIs. RFIs were chosen as the means to collect the data, as they are raised during the stages of the project closer to, and during the construction. From the reviewed literature, it was clear many constructability issues were identified in stages three four and five of the project, hence the use of RFIs as the data source.

The categories used were derived from Leicht (2013), who derived them from the Constructability Information Classification Scheme (Hanlon & Sanvido, 1995). Below, Table 3 shows the categories used as well as their definition. Their definition was used as part of the qualitative analysis in order to categorise the RFIs. Some of the definitions have been expanded upon for this study from Leicht’s work.

What About Multi-Part Projects?

We’ve got it—each section delivered on time, cohesive and high-quality. We’ll manage the whole journey for you.

Table 3: Constructability Categories (R. Leicht 2013)

No. Constructability Category Definition
1. Design Inadequacy The existing design is inadequate to meet expected performance.
2. Design Omission The information of the existing design is incomplete or missing.
3. Design Ambiguity Information of the existing design is inconsistent across drawings, schedules, models, details etc.
4. Design Coordination Design concerns regarding coordination with other project participants and other trades.
5. Unforeseen Conditions Design concerns due to unforeseen external impacts from/ to the environment, the infrastructure and adjacent sites.
6. Resource Constraints Design concerns due to resource requirements or impacts, including material, time, equipment, tools, space, etc.
7. Construction Performance Design concerns based on construction performance, including cost production rate, quality, safety, etc.
8. Not Constructability related The RFI is not constructability related.

The seven constructability categories used in this research are shown above, with the eighth category identifying issues that are not constructability related within the RFIs. The categorisation of the RFIs was completed by reading their contents and assessing which category best suited them. Some RFIs were constructability related, however on further inspection many were not, an example of this would be an RFI requesting setting out of specific works. This is not a constructability issue, as the information required for the subcontractor had just not been released.

Many RFIs were difficult to categorise as they were not explicitly a constructability issue when raised, however if not addressed they could become a constructability issue. A reason for this is the stage of the project in which the RFI was raised. For example, in the Design Detail stage constructability issues are easily addressed and expected to be found, e.g. the drawings and specification do not align. In the construction stage the same issues have the potential to create more significant consequences, for example incurring a project delay while the drawing and specification are checked to work out which is correct. On top of this, the BDI was a design and build contract (D&B), meaning the RIBA (2013) stages overlap and design development continues as the project is under construction. As a result of this, understanding the significance of each RFI and its overall impact proved more difficult to identify.

To aid with the analysis an additional definition of Design Coordination was included and can be described as: a high-level concept of the planning, scheduling, representation, decision-making and control of product development with respect to time, tasks, resources and design aspects (Duffy, A. H. B. et al. (1993)).

To mitigate these additional difficulties, extra parameters were added to analyse the RFIs. These additional parameters included:

Do You Adapt to International Rules?

Yes! UK, US, or Aussie standards—we’ll tailor your paper to fit your school’s norms perfectly.

  • RIBA 2013 classification
  • Significance to project
  • Company raised by
  • Format

These additional parameters were included with the aim to aid the analysis of the data later in this study. The RFIs were categorised using the constructability criteria labelled one to eight and also with the four criteria above (see Tables 3, 4 and 5).

Table 4:  Definition of project significance for RFI classification

Significance Description
1 A minor issue that has no structural implications and isn’t on the critical path of construction. If unresolved no major consequences occur.
2 A common issue, if not addressed it could cause small delays to the project. Could include issues such as Drawings and Specification discrepancies.
3 A major issue, if unresolved serious time and costs are incurred on the project. Likely to be on the critical path, or key to releasing further work.

Stages 0,1,2 were not included in RFIs as RFIs began when the project team had set up on site, this is usually at the near end of stage 2 of the RIBA PoW (2013). For this reason, the RFIs were likely to only focus on stages 3 4 and 5.

It was difficult to identify constructability issues during stages 3 and 4 because at this point you would expect to identify issues and therefore resolve them early. The problems arise when these are in phase 5 as the cost is higher for a lower influence value. A limitation of this is that because the job was a D&B contract multiple phases were occurring simultaneously, so each RFI must be classified into its RIBA stage.

Constructability issues identified in stage 4 (Technical design) were identified through errors in the design, the simple release of documents for design wasn’t considered a constructability issue, nor were instructions to “set out works” for different trades.

What does a complex assignment mean?

If your assignment needs a writer with some niche know-how, we call it complex. For these, we tap into our pool of narrow-field specialists, who charge a bit more than our standard writers. That means we might add up to 20% to your original order price. Subjects like finance, architecture, engineering, IT, chemistry, physics, and a few others fall into this bucket—you’ll see a little note about it under the discipline field when you’re filling out the form. If you pick “Other” as your discipline, our support team will take a look too. If they think it’s tricky, that same 20% bump might apply. We’ll keep you in the loop either way!

Table 5: The RIBA 2013 Plan of Works (PoW). Sourced from: www.ribaplanofwork.com

After the RFIs had been categorised into their relevant location they were analysed to identify trends in the data. The next part of Research looked at the benefits of BIM to constructability issues and how they could be categorised.

3.3.         BIM Applicability

From the literature reviewed there are many common ideas about the benefits of BIM to construction projects. Many of these benefits are difficult to quantify beyond a certain point as they offer passive support to designers such as visualisation (O’Brian. (2013)). This study identifies the key benefits that BIM can have on constructability through secondary research as shown in the literature above. From this literature, the BIM benefits can be split into 3-D modelling and 4-D modelling, with further classification below these levels.

This study used the previously defined constructability criteria (see Table 3) to assess the extent to which BIM can be used to improve constructability issues. This was completed through the use of a BIM Applicability Matrix (Figure X). The benefits of BIM were assessed against the seven different constructability criteria. This was a qualitative study and is therefore partial to a level of subjectivity.

Table 3 (Leicht 2013) shows the Constructability categories numbered 1-8, these correspond to the y-axis of the Matrix with the exclusion of the non-constructability category (category 8). Table 6 shows the benefits of BIM for constructability issues. The benefits have been numbered for reference in the Matrix.

Table 6: The Benefits of BIM to Constructability Problems

No. BIM             Feature/ Function Description
1. Visualisation

Tags: Custom Homework Writing Help & Assignment Answers Service, Do My Homework Fast App, Help with all Assignment shark essay writing service, Homework assignments custom writings affordable services

Order|Paper Discounts

Why Choose Essay Bishops?

You Want The Best Grades and That’s What We Deliver

Top Essay Writers

Our top essay writers are handpicked for their degree qualification, talent and freelance know-how. Each one brings deep expertise in their chosen subjects and a solid track record in academic writing.

Affordable Prices

We offer the lowest possible pricing for each research paper while still providing the best writers;no compromise on quality. Our costs are fair and reasonable to college students compared to other custom writing services.

100% Plagiarism-Free

You’ll never get a paper from us with plagiarism or that robotic AI feel. We carefully research, write, cite and check every final draft before sending it your way.