Looking for a similar answer, essay, or assessment help services?

Simply fill out the order form with your paper’s instructions in a few easy steps. This quick process ensures you’ll be matched with an expert writer who
Can meet your papers' specific grading rubric needs. Find the best write my essay assistance for your assignments- Affordable, plagiarism-free, and on time!

Posted: June 23rd, 2023

Solve The Transportation Problem Engineering Essay

Introduction

Transport various quantities of a single homogeneous commodity to different destinations in such a way that total transportation costs minimum.

A scooter production company produces scooters at the units situated at various places (called origins) and supplies them to the places where the depot (called destination) are situated.

Which Citation Styles Can You Handle?

We get a lot of “Can you do MLA or APA?”—and yes, we can! Our writers ace every style—APA, MLA, Turabian, you name it. Tell us your preference, and we’ll format it flawlessly.

Here the availability as well as requirements of the various depots are finite and constitute the limited resources. This type of problem is known as distribution or transportation problem in which the key idea is to minimize the cost or the time of transportation.

In previous lessons we have considered a number of specific linear programming problems. Transportation problems are also linear programming problems and can be solved by simplex method but because of practical significance the transportation problems are of special interest and it is tedious to solve them through simplex method.

Objectives

Solve the transportation problem

Test the optimality of the solution.

Are Writing Services Legal?

Totally! They’re a legit resource for sample papers to guide your work. Use them to learn structure, boost skills, and ace your grades—ethical and within the rules.

Initial Basic Feasible Solution :

There are three different methods to obtain the initial basic feasible solution viz.

North-West corner rule

Lowest cost entry method

What’s the Price for a Paper?

Starts at $10/page for undergrad, up to $21 for pro-level. Deadlines (3 hours to 14 days) and add-ons like VIP support adjust the cost. Discounts kick in at $500+—save more with big orders!

Vogel’s approximation method

North-west corner method (NWCM)

This is the most systematic and earliest method for obtaining initial feasible solution. Steps involved in this method are stated as:

Step 1: Construct an empty m x n matrix, completed with rows & columns.

Step 2: Indicate the row totals and columns totals at the end.

Is My Privacy Protected?

100%! We encrypt everything—your details stay secret. Papers are custom, original, and yours alone, so no one will ever know you used us.

Step 3: starting with (1,1) cell at the north-west corner of the matrix, allocate maximum possible quantity keeping in views the allocation can neither be more than the quantity required by the respective warehouses nor more than the quantity available at supply Centre.

Step 4: adjust the supply and demand numbers in the respective rows & columns allocations.

Step 5: If the supply for the first row is exhausted then move down to the first cell in the second row and first column and go to step 4.

Step 6: If the demand for the first column is satisfied, then move to the next cell in the next cell in the second column and first row and go to step 4.

Is AI Involved in Writing?

Nope—all human, all the time. Our writers are pros with real degrees, crafting unique papers with expertise AI can’t replicate, checked for originality.

Step 7: If for any cell, supply equals demand then the next allocation can be made in cell either in the next row or column.

Step 8: Continue the procedure until the total available quantity is fully allocated to the cells as required.

Lowest cost entry method (LCEM)

This method takes into consideration the lowest cost and therefore takes less time to solve the problem; various steps of this method can be summarized as under:

Step 1: Select the cell with the lowest transportation cost among all the rows or columns of the transportation table. If the minimum cost is not unique then select arbitrarily any cell with lowest cost.

Why Are You the Best for Research?

Our writers are degree-holding pros who tackle any topic with skill. We ensure quality with top tools and offer revisions—perfect papers, even under pressure.

Step 2: allocate as many units as possible to the cell determined in step 1 and eliminate that row in which either capacity or requirement is exhausted.

Step 3: Adjust the capacity and requirement for the next allocation.

Step 4: Repeat steps 1 to 3 for the reduced table until the entire capacity is exhausted to fill the requirement at different destinations.

Vogel’s approximation method (VAM)

This method is preferred over the other two methods because the initial basic feasible solution obtained with VAM is either optimal or very close to the optimal solution. Therefore, the amount of time required to calculate the optimum solution is reduced. In Vogel’s approximation method the basis of allocation of unit cost penalty i.e. that column or row which has the highest unit cost penalty. Various steps in integration process are:

Who Writes My Assignments?

Experts with degrees—many rocking Master’s or higher—who’ve crushed our rigorous tests in their fields and academic writing. They’re student-savvy pros, ready to nail your essay with precision, blending teamwork with you to match your vision perfectly. Whether it’s a tricky topic or a tight deadline, they’ve got the skills to make it shine.

Step 1: Construct the cost, requirement and availability matrix with column and row information.

Step 2: Compare the penalty for each row and column in the transportation table. The penalty for a given row and column is merely the difference between the smallest cost and the next smallest cost element in that particular row or column.

Step 3: Identify the row and column with largest penalty. In this identifies row (column), choose the cell which has the smallest cost and allocate the maximum possible quantity to this cell. Delete the row (column) in which capacity/requirement is exhausted. Whenever the largest penalty among rows and column is not unique, make an arbitrary choice.

Step 4: Repeat step 1 to 3 for the reduced table until the entire capacities are reduced to fill the requirement at different warehouses.

Will My Paper Be Unique?

Guaranteed—100%! We write every piece from scratch—no AI, no copying—just fresh, well-researched work with proper citations, crafted by real experts. You can grab a plagiarism report to see it’s 95%+ original, giving you total peace of mind it’s one-of-a-kind and ready to impress.

Step 5: From step 4 we will get initial feasible solution. Now for IFS find the total transportation cost by multiplying the cell allocation by unit cost.

Though this method takes more time as compared to other two methods, but still it gives better solution and saves more time in reaching the optimal solution.

Some Solutions

Feasible Solution (F.S.)

A set of non-negative allocations xij

≥ 0 which satisfies throw and column restrictions is known as feasible solution.

Can You Use Any Citation Format?

Yep—APA, Chicago, Harvard, MLA, Turabian, you name it! Our writers customize every detail to fit your assignment’s needs, ensuring it meets academic standards down to the last footnote or bibliography entry. They’re pros at making your paper look sharp and compliant, no matter the style guide.

Basic Feasible Solution (B.F.S.)

A feasible solution to a m-origin and n-destination problem is said to be basic feasible solution if the number of positive allocations are (m+n-1).

If the number of allocations in a basic feasible solutions are less than (m+n-1), it is called degenerate basic feasible solution

(DBFS) (Otherwise non-degenerate).

Optimal Solution

A feasible solution (not necessarily basic) is said to be optimal if it minimizes the total transportation cost.

Can I Change My Order Details?

For sure—you’re not locked in! Chat with your writer anytime through our handy system to update instructions, tweak the focus, or toss in new specifics, and they’ll adjust on the fly, even if they’re mid-draft. It’s all about keeping your paper exactly how you want it, hassle-free.

Assignment 1:

Suppose that England, France, and Spain produce all the wheat, barley, and oats in the world. The world demand for wheat requires 125 million acres of land devoted to wheat production. Similarly, 60 million acres of land are required for barley and 75 million acres of land for oats. The total amount of land available for these purposes in England, France, and Spain is 70 million acres, 110 million acres, and 80 million acres, respectively. The number of hours of labor needed in England, France and Spain to produce an acre of wheat is 18, 13, and 16, respectively. The number of hours of labor needed in England, France, and Spain to produce an acre of barley is 15, 12, and 12, respectively. The number of hours of labor needed in England, France, and Spain to produce an acre of oats is 12, 10, and 16, respectively. The labor cost per hour in producing wheat is $9.00, $7.20, and $9.90 in England, France, and Spain, respectively. The labor cost per hour in producing barley is $8.10, $9.00, and $8.40 in England, France, and Spain respectively. The labor cost per hour in producing oats is $6.90, $7.50, and $6.30 in England, France, and Spain, respectively. The problem is to allocate land use in each country so as to meet the world food requirement and minimize the total labor cost.

(a) Formulate this problem as a transportation problem by constructing the appropriate parameter table.

(b) Reconsider the problem in the preceding example. Starting with the northwest corner rule, Find basic feasible solution.

(c) Obtain an optimal solution

How Do I Order a Paper?

It’s a breeze—submit your order online with a few clicks, then track progress with drafts as your writer brings it to life. Once it’s ready, download it from your account, review it, and release payment only when you’re totally satisfied—easy, affordable help whenever you need it. Plus, you can reach out to support 24/7 if you’ve got questions along the way!

Solution 1:

Let England, France, and Spain be the three sources, where their supplies are the millions of acres of land that are available for growing these crops. Let Wheat, Barley, and Oats be the three destinations, where their demands are the millions of acres of land that are needed to fulfill the world demand for these respective crops. The unit cost (in millions of dollars) is the labor cost per million acres, so the number of hours of labor needed is multiplied by the cost per hour. The parameter table is as follows:

wheat

barley

oats

How Quick Can You Write?

Need it fast? We can whip up a top-quality paper in 24 hours—fully researched and polished, no corners cut. Just pick your deadline when you order, and we’ll hustle to make it happen, even for those nail-biting, last-minute turnarounds you didn’t see coming.

Available

England

18*9

15*8.10

12*6.90

Can You Handle Tough Topics?

Absolutely—bring it on! Our writers, many with advanced degrees like Master’s or PhDs, thrive on challenges and dive deep into any subject, from obscure history to cutting-edge science. They’ll craft a standout paper with thorough research and clear writing, tailored to wow your professor.

70

France

13*7.20

12*9

10*7.50

How Do You Match Professor Expectations?

We follow your rubric to a T—structure, evidence, tone. Editors refine it, ensuring it’s polished and ready to impress your prof.

110

Spain

16*9.90

12*8.40

How Do You Edit My Work?

Send us your draft and goals—our editors enhance clarity, fix errors, and keep your style. You’ll get a pro-level paper fast.

16*6.30

80

demand

125

60

Can You Brainstorm Topics?

Yep! We’ll suggest ideas tailored to your field—engaging and manageable. Pick one, and we’ll build it into a killer paper.

75

260

(b) Draw the network representation of this problem.

The network presentation of this problem is given below.

(c) Obtain an optimal solution.

We can use the Excel Solver to solve this problem and obtain the following solution.

Allocation Quantities

Destination

Wheat

Barley

Do You Offer Fast Edits?

Yes! Need a quick fix? Our editors can polish your paper in hours—perfect for tight deadlines and top grades.

Oats

Totals

Supply

England

0

0

Can You Start With an Outline?

Sure! We’ll sketch an outline for your approval first, ensuring the paper’s direction is spot-on before we write.

70

70

=

70

Source

France

110

0

0

Can You Add Charts or Stats?

Definitely! Our writers can include data analysis or visuals—charts, graphs—making your paper sharp and evidence-rich.

110

=

110

Spain

15

60

5

80

=

80

Totals

125

What About Multi-Part Projects?

We’ve got it—each section delivered on time, cohesive and high-quality. We’ll manage the whole journey for you.

60

75

=

=

=

Total cost = $25.02 billion

Demand

125

Do You Adapt to International Rules?

Yes! UK, US, or Aussie standards—we’ll tailor your paper to fit your school’s norms perfectly.

60

75

For this problem, the initial BF solution obtained by the northwest corner rule is shown below.

Optimality Test:

Since cij – ui – vj = 0 if xij is a basic variable,

cij = ui + vj for each (i, j) such that xij is basic.

What does a complex assignment mean?

If your assignment needs a writer with some niche know-how, we call it complex. For these, we tap into our pool of narrow-field specialists, who charge a bit more than our standard writers. That means we might add up to 20% to your original order price. Subjects like finance, architecture, engineering, IT, chemistry, physics, and a few others fall into this bucket—you’ll see a little note about it under the discipline field when you’re filling out the form. If you pick “Other” as your discipline, our support team will take a look too. If they think it’s tricky, that same 20% bump might apply. We’ll keep you in the loop either way!

Because the number of unknowns (the ui and vj) exceeds the number of these equations by one, we can set one unknown equal to an arbitrary value, say 0. These equations can then be solved as outlined below.

x21: 93.6 = u2 + v1. Set u2 = 0, so v1 = 93.6,

x22: 108 = u2 + v2. v2 = 108.

x11: 162 = u1 + v1. Know v1 = 93.6, so u1 = 68.4.

Who is my writer? How can I communicate with him/her?

Our writers come from all corners of the globe, and we’re picky about who we bring on board. They’ve passed tough tests in English and their subject areas, and we’ve checked their IDs to confirm they’ve got a master’s or PhD. Plus, we run training sessions on formatting and academic writing to keep their skills sharp. You’ll get to chat with your writer through a handy messenger on your personal order page. We’ll shoot you an email when new messages pop up, but it’s a good idea to swing by your page now and then so you don’t miss anything important from them.

x32: 100.8 = u3 + v2. Know v2 = 108, so u3 = -7.2.

x33: 100.8 = u3 + v3. Know u3 = -7.2, so v3 = 108.

Since cij – ui – vj represents the rate at which the objective function will change as a no basic variable xij is increased, we now can check whether increasing any no basic variable will decrease the total cost Z.

No basic variable

cij – ui – vj

x12

121.5 – 68.4 – 108 = -54.9

x13

82.8 – 68.4 – 108 = -93.6

x23

75 – 0 – 108 = -33

x31

158.4 -(-7.2) – 93.6 = 72

Because some of these (cij – uij – vj) values are negative, the initial BF solution is not optimal.

Iteration 1:

We select the non-basic variable x13 to be the entering basic variable because it has the largest negative value of (cij – ui – vj).

When x13 is increased from 0 by any particular amount, a chain reaction is set off that requires alternately decreasing and increasing current basic variables by the same amount in order to continue satisfying the supply and demand constraints. This chain reaction is depicted in the next figure, where the + sign inside a box in cell (1, 3) indicates that the entering basic variable is being increased there and the + or – sign next to other circles indicate that a basic variable is being increased or decreased there.

Each donor cell (indicated by a minus sign) decreases its allocation by exactly the same amount as the entering basic variable and each recipient cell (indicated by a plus sign) is increased. The entering basic variable will be increased as far as possible until the allocation for one of the donor cells drops all the way down to 0. Since the original allocations for the donor cells are

x11 = 70, x22 = 55, x33 = 75,

x22 will be the one that drops to 0 as x13 is increased (by 55). Therefore, x22 is the leaving basic variable.

Since each of the basic variables is being increased or decreased by 55, the values of the basic variables in the new BF solution are

x11 = 15, x13 = 55, x21 = 110, x32 = 60, x33 = 20.

Optimality Test After Iteration 1:

Since Source 1 now has two basic variables (tied for the maximum number), let us set u1 = 0 this time. The cij = ui + vj equations then would be solved as follows.

x11: 162 = u1 + v1. Set u1 = 0, so v1 = 162,

x13: 82.8 = u1 + v3. v3 = 82.8.

x21: 93.6 = u2 + v1. Know v1 = 162, so u2 = -68.4.

x33: 100.8 = u3 + v3. Know v3 = 82.8, so u3 = 18.

x32: 100.8 = u3 + v2. Know u3 = 18, so v2 = 82.8.

We next calculate (cij – ui – vj) for the non-basic variables.

Non-basic variable

cij – ui – vj

x12

121.5 – 0 – 82.8 = 38.7

x22

108 – (-68.4) – 82.8 = 93.6

x23

75 – (-68.4) – 82.8 = 60.6

x31

158.4 – 18 – 162 = -21.6

We still have one negative value of (cij – ui – vj), so the current BF solution is not optimal.

Iteration 2:

Since x31 is the one non-basic variable with a negative value of (cij – ui – vj), x31 becomes the entering basic variable.

The resulting chain reaction is depicted next.

The donor cells have allocations of x11 = 15 and x33 = 20. Because 15 < 20, the leaving basic variable is x11.

Since the basic variables x21 and x32 were not part of this chain reaction, their values do not change. However, x31 and x13 increase by 15 while x11 and x33 decrease by 15. Therefore, the values of the basic variables in the new BF solution are

x13 = 70, x21 = 110, x31 = 15, x32 = 60, x33 = 5

Optimality Test After Iteration 2:

Because Source 3 now has the largest number of basic variables, we set u3 = 0 this time. The resulting calculations are shown below.

x31: 158.4 = u3 + v1. Set u3 = 0, so v1 = 158.4,

x32: 100.8 = u3 + v2. v2 = 100.8.

x33: 100.8 = u3 + v3. v3 = 100.8.

x13: 82.8 = u1 + v3. Know v3 = 100.8, so u1 = -18.

x21: 93.6 = u2 + v1. Know v1 = 158.4, so u2 = -64.8.

Non-basic variable

cij – ui – vj

x11

162 – (-18) – 158.4 = 21.6

x12

121.5 – (-18) – 100.8 = 38.7

x22

108 – (-68.4) – 100.8 = 72

x23

75 – (-64.8) – 100.8 = 39

Since all of these values of (cij – ui – vj) are nonnegative, the current BF solution is optimal.

Thus, the optimal allocation of land to crops is

70

million acres in England for oats,

110

million acres in France for wheat,

15

million acres in Spain for wheat,

60

million acres in Spain for barley,

5

million acres in Spain for oats.

The total cost of this grand enterprise would be

Z = $25.02 billion.

A contractor, Susan Meyer, has to haul gravel to three building sites. She can purchase as much as 18 tons at a gravel pit in the north of the city and 14 tons at one in the south. She needs 10, 5, and 10 tons at sites 1, 2, and 3, respectively. The purchase price per ton at each gravel pit and the hauling cost per ton are given in the table below. Susan wishes to determine how much to haul from each pit to each site to minimize the total cost for purchasing and hauling gravel.

Hauling Cost per Ton at Site

Pit

1

2

3

Price per Ton

North

$30

$60

$50

$100

South

$60

$30

$40

$120

Now suppose that trucks (and their drivers) need to be hired to do the hauling, where each truck can only be used to haul gravel from a single pit to a single site. Each truck can haul 5 tons, and the cost per truck is five times the hauling cost per ton given above. Only full trucks would be used to supply each site.

(a) Formulate this problem as an assignment problem by constructing the appropriate cost table, including identifying the assignees and tasks.

The tasks are the loads needed at sites 1, 2, and 3. The assignees are the three trucks from the North pit and the two trucks from the South pit. Considering the purchase price for the gravel and the hauling cost per truck, the cost table is constructed as follows.

Task (Site)

1a

1b

2

3a

3b

North 1

650

650

800

750

750

North 2

650

650

800

750

750

Assignee

North 3

650

650

800

750

750

South 1

900

900

750

800

800

South 2

900

900

750

800

800

(b) Obtain an optimal solution.

We use the Excel Solver to obtain the following optimal solution with a minimum cost of $3500.

Task (Site)

1a

1b

2

3a

3b

North 1

X

North 2

X

Assignee

North 3

X

South 1

X

South 2

X

(c) Reformulate this assignment problem as an equivalent transportation problem with two sources and three destinations by constructing the appropriate parameter table.

The parameter table for the formulation as an equivalent transportation problem is given below.

Destination

1

2

3

Supply

Source

North

650

800

750

3

South

650

800

750

2

Demand

2

1

2

(d) Obtain an optimal solution for the problem as formulated in part (c).

We use the Excel Solver to obtain the following optimal solution with a minimum cost of $3500.

Destination

1

2

3

Supply

Source

North

2

1

3

South

1

1

2

Demand

2

1

2

Tags: BSN Papers, DNP Assignment, Health Care Essays, masters essays

Order|Paper Discounts

Why Choose Essay Bishops?

You Want The Best Grades and That’s What We Deliver

Top Essay Writers

Our top essay writers are handpicked for their degree qualification, talent and freelance know-how. Each one brings deep expertise in their chosen subjects and a solid track record in academic writing.

Affordable Prices

We offer the lowest possible pricing for each research paper while still providing the best writers;no compromise on quality. Our costs are fair and reasonable to college students compared to other custom writing services.

100% Plagiarism-Free

You’ll never get a paper from us with plagiarism or that robotic AI feel. We carefully research, write, cite and check every final draft before sending it your way.