Looking for a similar answer, essay, or assessment help services?

Simply fill out the order form with your paper’s instructions in a few easy steps. This quick process ensures you’ll be matched with an expert writer who
Can meet your papers' specific grading rubric needs. Find the best write my essay assistance for your assignments- Affordable, plagiarism-free, and on time!

Posted: December 2nd, 2022

Polymers and plastics in biomedical applications

Introduction

Polymers are increasingly being used to fabricate biomedical materials for tissue engineering and wound treatment applications, as well as for drug delivery. For tissue engineering and wound treatment applications, the mechanical properties of the polymeric material have to be matched to the specific application. An example of tissue engineering is the use of bioresorbable polymeric orthopedic materials for bone regeneration applications. The degradable material supports the growth and adhesion of new bone cells (chondrocytes) and is porous so as to provide a large, continuous surface for cell proliferation throughout the matrix. The degradable material serves to maintain mechanical integrity while the bone heals itself. The materials are designed to degrade in a time suitable for the particular application, but may be on the order of six months to twenty-four months.

An example of an external wound treatment application is artificial skin, where the polymeric material provides protection as new growth develops. Other materials are used internally to separate organs after surgical procedures. In tissue engineering and wound treatment applications the mechanical properties of the materials have to meet requirements specific to the application. In this experiment you will determine how the tensile properties of films of plasticized biopolymers depend on the chemical formulation of the material. Such applications are based on the polymer materials being degradable as well as biocompatible. Other applications might require materials that are biocompatible and nondegradable, such as long-term polyethylene implants.

What Citation Formats Do You Support?

We hear “Can you write in APA or MLA?” all the time—and the answer’s a big yes, plus way more! Our writers are wizards with every style—APA, MLA, Harvard, Chicago, Turabian, you name it—delivering flawless formatting tailored to your assignment. Whether it’s a tricky in-text citation or a perfectly styled reference list, they’ve got the skills to make your paper academically spot-on.

Polymers

Polymers can be synthetic or biological. Synthetic polymers are almost always made from nonrenewable fossil feedstocks, mainly petroleum. Examples are polyethylene, polystyrene, poly(vinyl chloride), and polypropylene, all of which are polyolefins. Poly(ethylene terephthalate) [PET] is a synthetic polyester. None of the above-named polymers are degradable, the main reason being that the polymer backbones contain only carbon-carbon single bonds. Examples of biodegradable polymers derived from petroleum are poly(vinyl alcohol) [a polyalcohol], poly(ethylene glycol)[a polyether], and the polyesters polycaprolactone and poly(glycolic acid). Polymers with heteroatoms in their backbones are generally biodegradable, although there are exceptions.

Biological polymers (biopolymers) are found in nature; they are intrinsically biodegradable. Abundant biopolymers include plant polysaccharides such as starch (composed of amylose and amylopectin), cellulose, agarose, and carrageenan, and animal polysaccharides such as chitin and the glycosaminoglycans. Abundant proteins include gelatin(denatured/hydrolyzed collagen), casein, keratin, and fibroin.

Poly(lactic acid) (PLA) is an example of a synthetic commercial polymer in which the monomer, lactic acid, is produced in large amounts through fermentation; the polymer is then synthesized by conventional methods. PLA is biodegradable.

Mechanical Properties

In implant and wound healing applications, the mechanical properties of the materials are of critical importance. In this experiment you will carry out tensile tests—tests in which specimens are placed between two clamps (grips) and drawn. The instrument measures and displays the force being applied (the load) and the resulting increase in the length of the sample (elongation, also called extension).

Are Paper Services Legal?

Yes, completely! They’re a valid tool for getting sample papers to boost your own writing skills, and there’s nothing shady about that. Use them right—like a study guide or a model to learn from—and they’re a smart, ethical way to level up your grades without breaking any rules.

From the dimensions of the film specimen (width and thickness), the instrument software calculates and displays the tensile stress (), equal to the load (F) per unit area of cross section (A = width x thickness).

It also calculates the (tensile) strain (), equal to the elongation (extension) divided by the original length of that portion of the specimen being measured (called the gage length). [In our experiment, the gage length is simply the separation of the grips securing the specimen.] The instrument will display percent elongation, which is the strain multiplied by 100.

As the tensile test proceeds, the instrument generates and displays a tensile stress-strain curve, which is a diagram that displays values of tensile stress (in MPa) plotted against tensile strain (%). The test continues until the specimen breaks. From the stress-strain curve, the software determines, and reports the following results in table form:

How Much for a Paper?

Prices start at $10 per page for undergrad work and go up to $21 for advanced levels, depending on urgency and any extras you toss in. Deadlines range from a lightning-fast 3 hours to a chill 14 days—plenty of wiggle room there! Plus, if you’re ordering big, you’ll snag 5-10% off, making it easier on your wallet while still getting top-notch quality.

(1) Tensile strength at break (or ultimate strength), which is the tensile stress at break.

(2) Elongation at break, as a percentage.

(3) Young’s modulus (also known as elastic modulus or modulus of elasticity or sometimes simply as modulus).

It is calculated as the initial slope of the stress-strain curve, which is usually observed to be linear with plastic films. This initial region reflects the elastic deformation of the specimen, in which the stress varies linearly with strain, analogous to Hooke’s law for the expansion of a spring. Beyond the linear region, the behavior is termed viscous; polymers and plastics are said to be viscoelastic materials. Modulus is a measure of the “stiffness” of the polymer or plastic.

Will Anyone Find Out I Used You?

Nope—your secret’s locked down tight. We encrypt all your data with top-tier security, and every paper’s crafted fresh just for you, run through originality checks to prove it’s one-of-a-kind. No one—professors, classmates, or anyone—will ever know you teamed up with us, guaranteed.

Table 1. Typical tensile properties of materials

Material t.s.(MPa) elong.(%) modulus(MPa)

polyethylene, low density 10 620 166

polycaprolactone 26 600-1000 435

Do You Rely on AI?

Not even a little—our writers are real-deal experts with degrees, crafting every paper by hand with care and know-how. No AI shortcuts here; it’s all human skill, backed by thorough research and double-checked for uniqueness. You’re getting authentic work that stands out for all the right reasons.

polypropylene 36 – 1380

poly(lactic acid),

biaxially oriented film 110/145 160/100 3310/3860

keratin(human hair) 526 46 6700

Why Are You Top for Research Papers?

Our writers are Ph.D.-level pros who live for nailing the details—think deep research and razor-sharp arguments. We pair that with top plagiarism tools, free revisions to tweak anything you need, and fast turnarounds that don’t skimp on quality. Your research paper won’t just shine—it’ll set the bar.

copper, annealed 240 30 100,000-130,000

steel 380-700 – 200,000-250,000

glass 2160-4830 – 50,000-70,000

Encyclopedia of Chemistry, 4th ed.; Handbook of Physics, 2nd ed.

Who’s Behind My Essays?

You’re in good hands with degree-holding pros—many rocking Master’s or higher—who’ve crushed our tough vetting tests in writing and their fields. They’re your partners in this, hitting tight deadlines and academic standards with ease, all while tailoring every essay to your exact needs. No matter the topic, they’ve got the chops to make it stellar.

Experimental Procedure

1. Film casting

Prepare the following cast films of plasticized biopolymers.

Sample 1 Place 32 mL of 2%(v/v) aqueous glycerol solution in a 200 mL beaker. Add 88 mL water and 2.40 g starch and 4.8 g agar. Heat with stirring to approximately 85-95 °C or until the polymer is in solution; do not boil. Slowly pour the solution into the big petri dish on a flat level surface. Try to remove all imperfections (bubbles) from the surface.

Sample 2. Repeat using 32 mL glycerol solution, 88 mL water, and 1.20 g starch and 3.6 g agar.

Sample 3. Repeat using 48 mL glycerol solution, 72 mL water, and 1.20 g starch and 3.0 g agar.

Is My Paper Original?

100%—we promise! Every paper’s written fresh from scratch—no AI, no copying—just solid research and proper citations from our expert writers. You can even request a plagiarism report to see it’s 95%+ unique, giving you total confidence it’s submission-ready and one-of-a-kind.

Sample 4. Repeat using 48 mL glycerol solution, 72 mL water, and 2.40 g starch and 3.5 g agar.

Allow the solutions to set for approximately one hour then place the petri dish in the drying oven. Label all petri dishes.

2. Film conditioning

After the agar films have been in the drying oven for about 24 hours, remove the petri dishes from the oven and place them in the large relative-humidity conditioning box (maintained at approximately 50% relative humidity) for 24-48 hours.

3. Preparing test specimens

After conditioning, the films are ready to have test specimens prepared from them. Working with one sample at a time, remove the petri dish from the conditioning box. Slowly and carefully remove the film from the petri dish by first peeling one corner and then applying fairly equal pressure to the entire width of the film as it comes off the petri dish lengthwise.

Can You Do Any Citation Style?

Yep—APA, Turabian, IEEE, Chicago, MLA, whatever you throw at us! Our writers nail every detail of your chosen style, matching your guidelines down to the last comma and period. It’s all about making sure your paper fits academic expectations perfectly, no sweat.

Place the sample on a piece of cardboard. Using the 1/4″ wide aluminum template as a straight edge, and the cutting knife, cut a rectangle approximately 3.5″ x 3″ from the center of the film, so as not to include any edges, as they are often not as uniform in thickness as the center.

Align the sample on the cardboard as follows:

Place the 1/4″ wide aluminum template vertically near one of the edges. Using the cutting tool, cut on both sides of the template to produce a specimen 3.5″ long and 1/4″ wide. Cut as cleanly as possible so as not to notch or tear the specimen. Cut six or seven additional strips, but do not use the second cut of the previous specimen as the first edge of the next; make two new cuts to produce each specimen.

Place the cut specimens on a piece of filter paper and transfer them into the dessicator located next to the Instron instrument. Similarly prepare specimens from the other three film samples.

Can I Adjust Instructions Later?

Absolutely—life happens, and we’re flexible! Chat with your writer anytime through our system to update details, tweak the focus, or add new requirements, and they’ll pivot fast to keep your paper on point. It’s all about making sure the final draft is exactly what you need, no stress involved.

4. Measuring mechanical properties of test specimens

During the laboratory you will measure the mechanical properties of the fours cast films. Measure at least five specimens for each of the four film samples. As you remove each specimen from the dessicator, you will be measuring the thickness of the specimen with a digital caliper.

5. Operating the Instron Testing Instrument

Refer instrument manual.

6. Laboratory Report

1. Express the compositions of the four film samples in terms of the weight percent of each component to two significant figures (excluding water); i.e. % agar, % glycerol (the density of glycerol is 1.26) and, if present, % starch.

2. Prepare a summary table of results showing the mean values of tensile strength (Mpa) (to 3 sig. figs.) and its standard deviation, elongation (%) (to 2 sig. figs.) and its standard deviation, and elastic modulus (MPa) (to 3 sig.figs.) and its standard deviation. [ASTM specifies these numbers of significant figures; a smaller number of significant figures would otherwise be justified given the observed standard deviations.]

How Do I Get Started?

It’s super easy—order online with a few clicks, then track progress with drafts as your writer works their magic. Once it’s done, download it from your account, give it a once-over, and release payment only when you’re thrilled with the result. It’s fast, affordable, and built with students like you in mind!

3. For the three agar-glycerol films what correlation do you observe between the effect of glycerol on one property and its effect on the others? Prepare a graph for each of the properties showing variation with composition. In Excel you can show a standard error for each point separately by using a separate data series for each point. Do not show a trend line and do not attempt to connect the data points.

Tags: Affordable Online College Homework, Cheap essay writer Australia, Pay someone to write my paper, Research Essay Help UK

Order|Paper Discounts

Why Choose Essay Bishops?

You Want The Best Grades and That’s What We Deliver

Top Essay Writers

Our top essay writers are handpicked for their degree qualification, talent and freelance know-how. Each one brings deep expertise in their chosen subjects and a solid track record in academic writing.

Affordable Prices

We offer the lowest possible pricing for each research paper while still providing the best writers;no compromise on quality. Our costs are fair and reasonable to college students compared to other custom writing services.

100% Plagiarism-Free

You’ll never get a paper from us with plagiarism or that robotic AI feel. We carefully research, write, cite and check every final draft before sending it your way.