Top Essay Writers
Our top essay writers are handpicked for their degree qualification, talent and freelance know-how. Each one brings deep expertise in their chosen subjects and a solid track record in academic writing.
Simply fill out the order form with your paper’s instructions in a few easy steps. This quick process ensures you’ll be matched with an expert writer who
Can meet your papers' specific grading rubric needs. Find the best write my essay assistance for your assignments- Affordable, plagiarism-free, and on time!
Posted: December 11th, 2022
Air pollution is an expression used to describe a state when the chemicals, particulate matter, or biological materials exceeds the recommended levels and become a source that harm effects or cause discomfort to humans and other organisms, or cause damages to the living natural environment. Pollution can be resulted from man-made daily industrial processes and activities or by the nature. There are many forms of pollutants solid particles, liquid droplets, or gases. Indoor air pollution can be arises from indoor and outdoor pollutant sources.
People, especially students, spend about 90% of their live in enclosed controlled environments. These closed enclosed environments could have short or long terms of harm health effects on occupants according to the quality of the inside air (pollution levels). In recent years, the issue of indoor air and its quality (IAQ) has become an internationally recognized issue that caught the attention of researchers and the occupants toward improving the quality of air inside buildings environments. Fanger (2006) defines the indoor air quality (IAQ) as “the desire of human to perceive the air as fresh and pleasant, with no negative impacts on their heath and productivity”. Many researchers such as Wark and Warner (1981) investigated the sources of the outdoor and the indoor pollution that affected the indoor air. They found that the indoor air quality can be influenced by the outdoor air pollution sources such as traffic; industrial; construction, and combustion activities and the indoor sources such as ventilation equipment, furnishings, and human activities.
We hear “Can you write in APA or MLA?” all the time—and the answer’s a big yes, plus way more! Our writers are wizards with every style—APA, MLA, Harvard, Chicago, Turabian, you name it—delivering flawless formatting tailored to your assignment. Whether it’s a tricky in-text citation or a perfectly styled reference list, they’ve got the skills to make your paper academically spot-on.
Common Indoor Air Pollutants
In this section, a total of 11 common indoor air quality parameters and its outdoor and indoor source in addition to it is health hazard on human shall be discussed. The IAQ parameters consists of three physical parameters (room temperature, relative humidity, and air movement) related to occupants’ thermal comfort which is defined in the previous section, nine chemical parameters (sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), carbon dioxide (CO2), particulates matters (PM), formaldehyde (HCHO) , radon (Rn) and ozone (O3)).In addition to the discussion of microbiological parameters (airborne bacteria, viruses, fungi and pollen), dust, odors and hydrocarbons.
Sulfur dioxide (SO2)
This type of pollutant gas has been extensively studied by many researchers around the world in outdoors environments due to it is high tendency to react with wide range of chemicals. SO2 is a colorless gas with a characteristic pungent odor and results from the fossil fuels combustion. Acid rain is one of the outdoor pollution problem cased by this gas.
Yes, completely! They’re a valid tool for getting sample papers to boost your own writing skills, and there’s nothing shady about that. Use them right—like a study guide or a model to learn from—and they’re a smart, ethical way to level up your grades without breaking any rules.
Indoor SO2 concentrations are usually lower than outdoor, probably around 0.1 ppm, (Andersen 1972; Yocom, 1982 and Meyer, 1983). Due to it tendency to react with many chemicals, indoor SO2 can reacts with building materials and absorbed by the building surfaces (Andersen 1972). This gas can dissolves in water and mixes with air in all temperatures. The main indoor sources of SO2 are coal burning inside fireplaces and using fuel oil stoves and heaters. Sulfur dioxide causes headache, general discomfort, anxiety, and inflammation of the respiratory tract, wheezing, lung damage, and irritation of the eyes, nose and throat, choking and coughing.
Nitrogen dioxide (NO2)
Nitrogen dioxide is formed in outdoor atmosphere from high temperature combustion processes by the reaction of the nitric oxide (NO) with Oxygen (O2) and Ozone (O3). Motor vehicles contribute to about 55% of the manmade NOx emissions, EPA (2008). The major sources of this gas in indoors environments are gas cooking stoves and heater and tobacco smoke. In a study done by Yocom (1982) among British school children it was found that students whom suffer from reduced respiratory function are living in houses with gas stoves.
Prices start at $10 per page for undergrad work and go up to $21 for advanced levels, depending on urgency and any extras you toss in. Deadlines range from a lightning-fast 3 hours to a chill 14 days—plenty of wiggle room there! Plus, if you’re ordering big, you’ll snag 5-10% off, making it easier on your wallet while still getting top-notch quality.
Exposure to low levels of Nitrogen dioxide (NO2) causes shortness of breath, tiredness, nausea and irritation to the eyes, nose, throat, and lungs; exposure to high levels cause rapid burning, spasms, swelling of tissues in the throat and upper respiratory tract, reduced oxygenation of body tissues, a build-up of fluid in the lungs, and may lead to death.
Carbon monoxide (CO)
CO is a very poisonous and non irritating gas that has no color, odor or taste. This gas produced by the incomplete combustion of carbon-based fuels (Yocom, 1982 and Meyer, 1983). Vehicular exhaust is a major source of carbon monoxide, EPA (2008). The indoor carbon monoxide concentrations are often higher than the outdoor concentrations due to the emission from gas stoves and tobacco smoke, Yocom (1982). The main effect of this gas on human health is its affinity for hemoglobin in blood. The inhaled CO mixes with the hemoglobin in the blood and forms carboxyhemoglobin that reduces the oxygen carrying capacity of the blood vessels. CO is 250 times more efficient at hemoglobin binding than Oxygen. Exposure to carbon monoxide causes headaches, shortness of breath, muscle aches, chest pain, especially in people with previous heart problems history, blurry vision, dizziness, nausea/vomiting, weakness, confusion, fatigue, rapid heart rate at high levels, fast deep breathing at high levels, fainting and death at high levels [CPSC Document #466, 2008].
Carbon dioxide (CO2)
Nope—your secret’s locked down tight. We encrypt all your data with top-tier security, and every paper’s crafted fresh just for you, run through originality checks to prove it’s one-of-a-kind. No one—professors, classmates, or anyone—will ever know you teamed up with us, guaranteed.
Carbon dioxide is a colorless, odorless greenhouse gas emitted from the complete combustion of the carbon with Oxygen. The average typical concentrations of CO2 in the outdoor environment are 350-400 ppm, where the indoor concentrations are higher than those of the outdoor. The principal sources of the indoor CO2 are human body through the metabolism process (food consumption), and occupants’ activity.
The health problems associated with carbon dioxide exposure are headaches, dizziness, restlessness, feeling of an inability to breathe, malaise (vague feeling of discomfort), increased heart rate, increased blood pressure, visual distortion, impaired hearing, nausea/vomiting, loss of consciousness, coma, convulsions, death from asphyxiation (body cells do not get the oxygen they need to live).
Particulate matter (PM)
Particulate matter (PM) or fine particles are a mixture of tiny solid particles of solid and liquid droplets suspended in air. Particulate matter can be generated from man made (fossil fuels combustion processes) or natural (volcanoes, dust storms, and forest and grassland fires). There are many sources of the indoor particles such as pets, gas stoves, and tobacco smoke. Particles classified according to its size as fine particles are those whose size is smaller than 2.5 μm and coarse particles are those which are larger than 2.5 μm. Heinrich and Slama (2007) argued that the fine particles are the major threat source that affects the children health, where exposing to fine particles can results in cardiac and respiratory problems, [Dockery et al. (1993), Dockery and Pope (1994), Pope et al. (2002), Wu et al. (2005), Gilliland et al. (2005)]. The PM metals components are a major source that involves in the development of pulmonary, cardiovascular and allergic diseases, Schwarze et al. (2006). Exposure to high levels of fine particles causes health hazards such as heart diseases; respiratory diseases; altered lung functions, especially in children, and lung cancer and death.
Not even a little—our writers are real-deal experts with degrees, crafting every paper by hand with care and know-how. No AI shortcuts here; it’s all human skill, backed by thorough research and double-checked for uniqueness. You’re getting authentic work that stands out for all the right reasons.
Formaldehyde (HCHO)
Formaldehyde is a colorless with a strong pungent odor and considered as the most important substance in the aldehydes group due to it is mostly used in the production process of many building materials such as foam insulation, plywood, carpets, combustion appliances and particle board adhesives which releases again the formaldehyde to the indoor environment. The typical indoor formaldehyde concentrations range from 0.05 to 1 ppm, where in the new buildings the indoor levels of the formaldehyde are high, (Meyer, 1983; Samet et al., 1991) and most of the complains were from buildings with formaldehyde foam insulation and mobile homes that uses plywood paneling, Wadden (1983). The rate of diffusion of this substance is a function of the indoor temperature and humidity. Exposing to formaldehyde can cause health effects include eye, nose, and throat irritation; wheezing and coughing; fatigue; skin rash; severe allergic reactions, EPA (2008). High concentrations of formaldehyde may cause cancer and other effects listed under organic gases.
Radon (Rn)
Radon is an inert radioactive, colorless, odorless, tasteless noble chemical gas element. Naturally, this element can be found as soil gas contained radon formed from the decay product of uranium and can remains as a gas under normal environmental conditions. This contaminant element can be found indoors due to some sources such as building materials especially that rich with radium, such as alum shale-based material and phosphogypsum wallboard, deep wells water natural gas having high radon concentrations. Another principal source is the flow of the soil gas into the homes through building cracks, sumps and any other openings or around the concrete slab, Bale (1980) Handbook ch. 40. Due to tightness of the buildings design, the indoor concentrations are usually higher than that in outdoor environment. Recently, this element is considered as carcinogen element du to it is radioactivity, which has a vital health hazard on buildings occupants, where it is considered to be the second most reason of lung cancer after cigarette smoking, EPA (2008).
Our writers are Ph.D.-level pros who live for nailing the details—think deep research and razor-sharp arguments. We pair that with top plagiarism tools, free revisions to tweak anything you need, and fast turnarounds that don’t skimp on quality. Your research paper won’t just shine—it’ll set the bar.
Ozone (O3)
Ozone is a very reactive pollutant that can oxidizes most of the chemicals in nature such as aldehydes. In natural outdoor environment, Ozone produces from the effect of the sunlight on the nitrogen oxides and hydrocarbons. Usually the Ozone concentrations in the outdoor environment are higher than that found in indoors. The main sources of the high indoor Ozone concentration are the photocopy machines, laser printers, electrostatic air cleaners and x-ray generators, (Yocom, 1982 and Wadden, 1983). These sources develop electrostatic fields that can generate highly toxic concentrations of ozone in air. Exposing to low concentration levels of Ozone can cause eye irritation, visual disturbances, headaches, dizziness, mouth and throat irritation, chest pain, insomnia, breath shortness and coughing (Sittig 1991), where exposure to high levels of ozone can reduce lung function or respiratory problems, such as asthma or bronchitis.
Microbiological Parameters
Fungi, molds, viruses, bacteria and pollen are types of the microbiological indoor contaminants. The major sources of these contaminants are human, animals and plants and it can be found anywhere these sources are available, Meyer (1983). Due to the insufficient maintenance of the HVAC system parts (condensers, cooling coils, ducts and drainage pans) it can be another source of contamination by encouraging the proliferation of the microbes, (Wark and Warner, 1981 and Samet et al., 1991). The concentrations of the indoor microbes are higher than that in the outdoor environment due to the building tightness and the source availability.
You’re in good hands with degree-holding pros—many rocking Master’s or higher—who’ve crushed our tough vetting tests in writing and their fields. They’re your partners in this, hitting tight deadlines and academic standards with ease, all while tailoring every essay to your exact needs. No matter the topic, they’ve got the chops to make it stellar.
Dust
ASHRAE (2009) defines dust as “solid particles projected into air by natural forces such as wind, volcanic eruption, earthquakes, or by mechanical processes including crushing, grinding, demolition, blasting, screening, drilling, shoveling and sweeping”. Dust immigrates from outside to inside environment by infiltration air through the building’s crack, unsealed windows and doors and through the ventilation system. Dust has health effects on people with ultra-sensitive lungs such as people with asthma, young children and elderly people. Dust causes discomfort for people and damages home furniture and household equipment.
Odors
Indoor odors are arising from occupant’s body and their indoor activities such as smoking, cooking, garbage, sewage and industrial processes. The human body normally dissipates around 200 types of chemicals which are responsible for the human odors, (Meyer, 1983). Odors do not have any major effects on the occupant’s health, but it causes discomfort sensation to the occupants which make it as a sign of the poor indoor air quality.
100%—we promise! Every paper’s written fresh from scratch—no AI, no copying—just solid research and proper citations from our expert writers. You can even request a plagiarism report to see it’s 95%+ unique, giving you total confidence it’s submission-ready and one-of-a-kind.
Hydrocarbons
Most of the indoor hydrocarbons sources are results from the different housekeeping materials such as widows, oven, drain, clothing cleaners, paint solvent and human use materials such as deodorants, shaving creams, hair sprays and air refreshers sprays. The indoor hydrocarbons levels reach high levels when housekeeping is in progress, Meyer (1983). The indoor cooking gas (mostly Propane gas) is considered also a major source of the indoor hydrocarbons which may results in serious fire accidents or death due to insufficient maintenance or checking for the gas burner and cooking equipment, Meyer (1983).
During this study, the CO2 contaminant will be studied to investigate the indoor air quality inside Kuwaiti’s classrooms. The indoor concentration of carbon dioxide (CO2) has often been used as a surrogate for the ventilation rate per occupant, (Lee and Chang, 1999 and Daisey et al., 2003), where providing good ventilation rates with sufficient amounts of fresh air can dilutes and reduces the concentrations levels of indoor air pollution generated by the different indoor pollutants sources.
International and Kuwait Indoor Air Quality Standards and Regulations
Yep—APA, Turabian, IEEE, Chicago, MLA, whatever you throw at us! Our writers nail every detail of your chosen style, matching your guidelines down to the last comma and period. It’s all about making sure your paper fits academic expectations perfectly, no sweat.
Since the last decade, researchers were interested to investigate the indoor air pollution for different indoor environments and the contaminant sources to indicate the acceptable indoor concentration levels for these pollutants. As a result of these researches, many IAQ standards and regulations have been developed and established by different organizations indicates the recommended acceptable concentrations levels for these indoor pollutants. These standards are established according to the purpose and activity of the indoor zone and characteristics of it is users or occupants. For this reason, sometimes it can be found some differences in values for the same pollutant. A summary of the common indoor air pollutants standards are given in Table 3.1.
Table 3.1: International and Kuwait Standards and Guidelines for Common Indoor Air Pollutants, (in ppm).
Sulfur
Dioxide
Absolutely—life happens, and we’re flexible! Chat with your writer anytime through our system to update details, tweak the focus, or add new requirements, and they’ll pivot fast to keep your paper on point. It’s all about making sure the final draft is exactly what you need, no stress involved.
(SO2)
2 [8 hr]
5 [15 min]
0.019
It’s super easy—order online with a few clicks, then track progress with drafts as your writer works their magic. Once it’s done, download it from your account, give it a once-over, and release payment only when you’re thrilled with the result. It’s fast, affordable, and built with students like you in mind!
0.38 [5 min]
5
0.5
1.0 [5 min]
We can crank out a killer paper in 24 hours—quality locked in, no shortcuts. Just set your deadline when you order, and our pros will hustle to deliver, even if you’re racing the clock. Perfect for those last-minute crunches without compromising on the good stuff.
0.14 [24 hr]
0.03 [1 yr]
0.047 [24 hr]
0.019 [1 yr]
2 [8 hr]
For sure! Our writers with advanced degrees dive into any topic—think quantum physics or medieval lit—with deep research and clear, sharp writing. They’ll tailor it to your academic level, ensuring it’s thorough yet easy to follow, no matter how tricky the subject gets.
5 [15 min]
2 [8 hr]
5 [15 min]
Nitrogen
Dioxide
We stick to your rubric like glue—nailing the structure, depth, and tone your professor wants—then polish it with edits for that extra shine. Our writers know what profs look for, and we double-check every detail to make sure it’s submission-ready and grade-worthy.
(NO2)
1.0
[15 min]
0.05
Send us your draft and tell us your goals—we’ll refine it, tightening arguments and boosting clarity while keeping your unique voice intact. Our editors work fast, delivering pro-level results that make your paper pop, whether it’s a light touch-up or a deeper rework.
0.25 [1 hr]
5
[Ceiling]
5
10 [5 min]
Yes—we’ve got your back! We’ll brainstorm fresh, workable ideas tailored to your assignment, picking ones that spark interest and fit the scope. You choose the winner, and we’ll turn it into a standout paper that’s all yours.
0.05
[1 yr]
0.1 [1 hr]
0.02 [1 yr]
3
5 [15 min]
0.021 – 0.08
Yep—need changes fast? We’ll jump on your paper and polish it up in hours, fixing whatever needs tweaking so it’s ready to submit with zero stress. Just let us know what’s off, and we’ll make it right, pronto.
[ 8 hr]
0.026 – 0.08
[8 hr]
Carbon
Dioxide
(CO2)
Sure thing! We’ll whip up a clear outline to map out your paper’s flow—key points, structure, all of it—so you can sign off before we dive in. It’s a handy way to keep everything aligned with your vision from the start.
5000
30000 [15 min]
3500
5000
5000
10000 [15 min]
5000
30000 [15 min]
Absolutely—we’ll weave in sharp analysis or eye-catching visuals like stats and charts to level up your paper. Whether it’s crunching numbers or designing a graph, our writers make it professional and impactful, tailored to your topic.
800 – 1000
[8 hr]
600 – 1000
[8 hr]
Carbon
Monoxide
(CO)
35
200 [Ceiling]
11 [8 hr]
We tackle each chunk with precision, keeping quality consistent and deadlines on track from start to finish. Whether it’s a dissertation or a multi-part essay, we stay in sync with you, delivering top-notch work every step of the way.
25 [1 hr]
50
30
60 [ 30 min]
9 [8 hr]
Yes—we’ve got it down! Our writers switch seamlessly between UK, US, Australian, or any other standards, matching your school’s exact expectations. Your paper will feel native to your system, polished and ready for wherever you’re studying.
35 [1 hr]
86 [15 min]
51 [30 min]
25 [1 hr]
8.6 [8 hr]
Progressive delivery is a cool option where we send your paper in chunks—perfect for big projects like theses or dissertations. You can even pay for it in installments. It’s just 10% extra on your order price, but the perks are worth it. You’ll stay in closer touch with your writer and can give feedback on each part before they move to the next. That way, you’re in the driver’s seat, making sure everything lines up with what you need. It saves time too—your writer can tweak things based on your notes without having to redo huge sections later.
25
1.7 / 8.7
[8 hr]
86 [15 min]
Absolutely! If your teacher’s got feedback, you can request a free revision within 7 days of approving your paper—just hit the revision request button on your personal order page. Want a different writer to take a crack at it? You can ask for that too, though we might need an extra 12 hours to line someone up. After that 7-day window, free revisions wrap up, but you can still go for a paid minor or major revision (details are on your order page). What if I’m not satisfied with my order? If your paper needs some tweaks, you’ve got that free 7-day revision window after approval—just use the “Revision” button on your page. Once those 7 days are up, paid revision options kick in, and the cost depends on how much needs fixing. Chat with our support team to figure out the best way forward. If you feel the writer missed the mark on your instructions and the quality’s off, let us know—we’ll dig in and sort it out. If revisions don’t cut it, you can ask for a refund. Our dispute team will look into it and figure out what we can offer. Check out our money-back guarantee page for the full scoop.
51 [30 min]
25 [1 hr]
8.6 [8 hr]
Particular
Matter
(<2.5 μm)
0.1 mg/m3
[1 hr]
0.04 mg/m3
[8 hr]
5 mg/m3
1.5 mg/m3
For <4 μm
35μg/m3[24hr]
15μg/m3[1 yr]
3 mg/m3
0.23 mg’m3
[24 hr]
0.07 mg/m3
[1 yr]
Formaldehyde
(HCHO)
0.016
0.1 [15 min]
0.1
0.04[8 hr]
0.75
2 [15 min]
0.3
1.0 [5 min]
0.4
0.081 [30 min]
0.3 [ceiling]
0.024 / 0.081
[8 hr]
0.08 [30 min]
Radon
(Rn)
800 Bq/m3e
4 pCi/L
[1 yr]
2.7 pCi/L
[1 yr]
4.1 – 5.4 pCi/L
[8 yr]
4 pCi/L
[1 yr]
Ozone
(O3)
0.1
[Ceiling]
0.12
[1 hr]
0.1
0.12 [1 hr]
0.08 [8 hr]
0.06
[8 hr]
0.05 – heavy work
0.2 – any work [2 hr]
0.025 – 0.061
[8 hr]
0.03 – 0.1
[8 hr]
Numbers in brackets [ ] refers to average time (min=minutes; hr=hours and yr=years)
Tags: Academic Paper Assistance, Assignment Help Australia, Cheap Essay Writing Service, Dissertation Writing ServicesYou Want The Best Grades and That’s What We Deliver
Our top essay writers are handpicked for their degree qualification, talent and freelance know-how. Each one brings deep expertise in their chosen subjects and a solid track record in academic writing.
We offer the lowest possible pricing for each research paper while still providing the best writers;no compromise on quality. Our costs are fair and reasonable to college students compared to other custom writing services.
You’ll never get a paper from us with plagiarism or that robotic AI feel. We carefully research, write, cite and check every final draft before sending it your way.