Top Essay Writers
Our top essay writers are handpicked for their degree qualification, talent and freelance know-how. Each one brings deep expertise in their chosen subjects and a solid track record in academic writing.
Simply fill out the order form with your paper’s instructions in a few easy steps. This quick process ensures you’ll be matched with an expert writer who
Can meet your papers' specific grading rubric needs. Find the best write my essay assistance for your assignments- Affordable, plagiarism-free, and on time!
Posted: May 30th, 2021
Ultra-Wide band communications attracted great interest of researchers as it has become one of the most promising technologies for short range mobile systems, Personal Area Networks (PAN) and high speed indoor data communication applications. FCC mentioned parameters for the complete functioning of UWB antennas and they have to cover the bandwidth specified by FCC to attain adequate performance.
UWB has the advantage of high data rates with extremely low interference to other narrow band systems. The ultra short pulses provide extremely good spatial resolution, as the range provided by UWB is enough to seize down the major applications of daily life like in ground penetrating radars, parking radars, biomedical imaging, precision tracking and location finding. Various types of UWB antennas have been proposed and implemented with different feeding techniques, such as transmission line, probe feed, dual feed and coplanar waveguides (CPW).
We get a lot of “Can you do MLA or APA?”—and yes, we can! Our writers ace every style—APA, MLA, Turabian, you name it. Tell us your preference, and we’ll format it flawlessly.
A compact antenna design fed by coplanar waveguide (CPW) is proposed. Overall dimensions of antenna are 28Ã-24 mm2. The design is fabricated and further analyzed to confirm its proper working in UWB range. The design of antenna is quite flexible as fiddling with the patch of microstrip antenna has been done in order to enhance the bandwidth which is the most valued obsession in the current environment. On the other hand, CPW has many advantages such as low radiation leakage, less dispersion at higher frequency, small mutual coupling between two adjacent lines which is helpful to place circuit elements close together without adding an additional layer of substrate and coplanar capability. Using CPW as feeding structure to excite a patch antenna has become very popular recently.
The proposed antenna offers an excellent performance for UWB systems by providing bandwidth ranging up to 15.65GHz. Critical design parameters return loss and radiation patterns are investigated in detail. Proposed antenna provides good impedance matching, stable gain characteristics and consistent radiation patterns over its almost whole frequency band of interest.
IEEE defines antenna as “a device for radiating and receiving electromagnetic waves”. They are used both as transmitter and receiver. This is era of wireless communication. Antennas are an important means of wireless communications now days. The need of time is compact small size antennas with enhanced bandwidth and gain. Amongst all antenna types microstrip patch antennas are most common. They are light in weight and consume low power. But patch antennas have disadvantage that they have narrow bandwidth. Many techniques are used to enhance bandwidth.
Ultrawide band antennas have many applications and for many years they have been used for broadband and spread spectrum features in radar systems. The UWB performances of antennas result from excitation by non-sinusoidal signals with quickly time-varying performances [1]. UWB are low power consumption antennas and are for unlicensed applications. As name suggests, they have broad spectrum.
Totally! They’re a legit resource for sample papers to guide your work. Use them to learn structure, boost skills, and ace your grades—ethical and within the rules.
Ultra wideband technology is used in low power, short range and high bandwidth communication. In UWB; through spreading information can be transmitted over a larger bandwidth and spectrum is also shared with the other users at the same time.
Federal Communication Commission (FCC) allocated the license free band of 3.1GHz-10.6GHz for use in UWB applications. Since then there is a growing demand of UWB antennas for high data rate applications i.e. wireless personal area network (WPAN).
UWB has had a important effect on antenna design. The major challenge in UWB antenna design is to achieve wide impedance bandwidth and stable gain while maintaining high radiation efficiency.
Starts at $10/page for undergrad, up to $21 for pro-level. Deadlines (3 hours to 14 days) and add-ons like VIP support adjust the cost. Discounts kick in at $500+—save more with big orders!
The purpose of this project is to design, stimulate, analyze and fabricate ultra wide band antenna using co-planer waveguide.
Design and analysis of a compact antenna fed by CPW for UWB Applications is proposed
Bandwidth of the proposed antenna is 15.65 GHz.
Antenna offers an excellent performance for ultra-wide band systems by providing an ultra-wide bandwidth ranging from 3.1 – 18.75 GHz.
100%! We encrypt everything—your details stay secret. Papers are custom, original, and yours alone, so no one will ever know you used us.
Gain of the proposed antenna is 4.91dBi over its almost whole frequency band of interest
Small size of antenna makes it suitable for applications which demand miniaturization of antenna structure and input impedance of 50 Ω.
We have simulated the designed antenna using Ansoft HFSS. Then the simulated antenna is fabricated and tested on the network analyzer. The simulated and measured results are also explained.
This report is divided into 6 chapters.
Nope—all human, all the time. Our writers are pros with real degrees, crafting unique papers with expertise AI can’t replicate, checked for originality.
Chapter 2 presents the fundamental parameters of antenna. This includes an explanation of various parameters related to antenna performance including radiation intensity ,radiation pattern, power density , gain, directivity and polarization etc.
Chapter 3 discusses the Microstrip Patch Antenna and Feeding techniques.
Chapter 4 includes Ultra wide band microstrip patch antenna, history of UWB antennas, their features and advantages.
Chapter 5 describes antenna design, simulated results, 2D and 3D radiation patterns for different frequencies and fabricated results.
Our writers are degree-holding pros who tackle any topic with skill. We ensure quality with top tools and offer revisions—perfect papers, even under pressure.
Chapter 6 concludes the entire work done throughout the designing of proposed antenna. Conclusion and future work helps to explore enormity of the subject.
The radiation pattern describes the strength of the radiated field in different directions from the antenna, at a constant distance. The radiation pattern is also reception pattern, as it describes the receiving properties of the antenna. It is defined as “a mathematical function or a graphical representation of the radiation properties of antenna as a function of space coordinates. In most cases the radiation pattern is determined in far field regions and is defined as a function of the directional coordinates. Radiation properties include power flux density, radiation intensity, field strength, directivity phase or polarization” [2].
The radiation pattern is three-dimensional, but measured patterns are usually two dimensional in vertical or horizontal plane view. These measured patterns are presented in either rectangular or polar format. Following figure shows radiation pattern of an antenna in polar plane and Cartesian coordinate systems.
http://www.cisco.com/en/US/prod/collateral/wireless/ps7183/ps469/images/0900aecd806a1a3e_null_null_null_08_07_07-03.jpg
Experts with degrees—many rocking Master’s or higher—who’ve crushed our rigorous tests in their fields and academic writing. They’re student-savvy pros, ready to nail your essay with precision, blending teamwork with you to match your vision perfectly. Whether it’s a tricky topic or a tight deadline, they’ve got the skills to make it shine.
Figure-2.1: Radiation Pattern of an antenna in Cartesian and polar coordinates
Radiation patterns are further categorized as relative and absolute radiation patterns. Absolute radiation patterns have absolute units of power or field strength. Relative radiation patterns are presented in relative units of power or field strength. The radiation measurement patterns are mostly relative to isotropic antennas, absolute gain of the antenna is established by antenna gain transfer method.
The radiation pattern varies with the distance i.e. the patterns in near filed and far filed are different. The field pattern that exists close to the antenna is known as near filed, and far-field refers to the field pattern that exists at large distances. The far-field is called radiation field. Radiation field and power are what is commonly of interest, so antenna patterns are generally measured in the far-field region. For antenna pattern measurement the distance should be chose large enough not to be in near-field or in far field. The minimum allowed distance depends on the dimensions of the antenna relative to the wavelength. The formula for this distance is:
Where, rmin is the minimum distance from the antenna
Guaranteed—100%! We write every piece from scratch—no AI, no copying—just fresh, well-researched work with proper citations, crafted by real experts. You can grab a plagiarism report to see it’s 95%+ original, giving you total peace of mind it’s one-of-a-kind and ready to impress.
d is the largest dimension of the antenna
λ is the wavelength.
Radiation lobes are defines as “portion of radiation pattern bounded by regions of relatively weak radiation intensity” [3]. These lobes are categorized as follow
Major Lobes
Yep—APA, Chicago, Harvard, MLA, Turabian, you name it! Our writers customize every detail to fit your assignment’s needs, ensuring it meets academic standards down to the last footnote or bibliography entry. They’re pros at making your paper look sharp and compliant, no matter the style guide.
Minor Lobes
Side Lobes
Back Lobes
A major lobe is defined as “the radiation lobe containing the direction of maximum radiation” [2]. Normally an antenna has one major lobe.
For sure—you’re not locked in! Chat with your writer anytime through our handy system to update instructions, tweak the focus, or toss in new specifics, and they’ll adjust on the fly, even if they’re mid-draft. It’s all about keeping your paper exactly how you want it, hassle-free.
Any lobe except major lobe is called minor lobe. It usually represents the radiation pattern which is not desirable.
A side lobe is “a radiation lobe in any direction other than the main lobe” [2]. Usually a side lobe is next to the main lobe and is in direction to the main lobe.
A back lobe is “a radiation lobe whose axis makes an angle of approximately 180° with respect to the beam of an antenna” or that is directed away from the main lobe [2].
File:Typical Antenna Pattern.jpg
It’s a breeze—submit your order online with a few clicks, then track progress with drafts as your writer brings it to life. Once it’s ready, download it from your account, review it, and release payment only when you’re totally satisfied—easy, affordable help whenever you need it. Plus, you can reach out to support 24/7 if you’ve got questions along the way!
Figure 2.2: An illustration of major and minor lobes of radiation pattern
The antenna fields are divided into three regions
Reactive near field
Radiating near field (Fresnel)
Need it fast? We can whip up a top-quality paper in 24 hours—fully researched and polished, no corners cut. Just pick your deadline when you order, and we’ll hustle to make it happen, even for those nail-biting, last-minute turnarounds you didn’t see coming.
Far field (Fraunhofer)
http://www.nearfield.com/images/theory-ffdist.jpg
Figure 2.3: Figure of Near Field and Far Field Regions
It is the region immediately around the antenna. In this region the reactive filed predominates. The distance of this filed with antenna is usually R< 0.62, where λ is the wavelength and D is the largest dimension of antenna.
Radiating near filed is defines as “that region of the field of an antenna between the reactive near-filed and the far-filed region wherein radiation fields predominate and wherein the angular field distribution is dependent upon the distance from the antenna” [2]. The distance of inner boundary is R< 0.62, and the distance of outer boundary R< 2D2/ λ.
Absolutely—bring it on! Our writers, many with advanced degrees like Master’s or PhDs, thrive on challenges and dive deep into any subject, from obscure history to cutting-edge science. They’ll craft a standout paper with thorough research and clear writing, tailored to wow your professor.
Far Field region is defined as “that region of the field of an antenna where the angular filed distribution is essentially independent of the distance from the antenna” [2].
Radiation Intensity is the power radiated from an antenna per unit solid angle. It is the parameter of far field radiation.
Directivity is figure of merit for antennas. It is the power density an antenna radiates in direction of maximum radiation to the average power density radiated by an isotropic antenna. Directivity for an isotropic antenna is always unity. It is expressed as
Where, D is directivity and U is radiation intensity, Uo is Intensity if an isotropic source and Prad is total radiation power.
The gain and directivity of an antenna are closely related to each other. However for gain in denominator it is total power accepted by an antenna rather than total power radiated by an antenna.
We follow your rubric to a T—structure, evidence, tone. Editors refine it, ensuring it’s polished and ready to impress your prof.
Gain is dimensionless. According to IEEE standards, gain doesn’t include losses arising from impedance mismatching or polarization mismatches.
The bandwidth is basically the difference or range between highest and lowest frequencies on which an antenna is operated. It is advantageous to have an antenna with high bandwidth. The bandwidth is expressed in term of ratio of upper cut off to the lower cutoff for broadband antennas.
Beamwidth is the angle usually measured in degrees; between the -3dB power radiated in the main lobe of radiation pattern.
img383
Send us your draft and goals—our editors enhance clarity, fix errors, and keep your style. You’ll get a pro-level paper fast.
Figure 2.4: Illustration of Beamwidth
It is the amount of power that is reflected back in to the transmission line due to mismatching or any other error. It is the efficiency of power delivered to the load from the transmission line. Mathematical representation of Return loss is
Return loss is measured in dB.
http://www.mwrf.com/Files/30/11240/Figure_05.gif
Figure 2.5: Return Loss
Yep! We’ll suggest ideas tailored to your field—engaging and manageable. Pick one, and we’ll build it into a killer paper.
Polarization is defined as point of reference of the electric field of the wave radiated by the antenna. It is categorized in three types:
When there is zero phase difference between x and y component of a wave then polarization is called linear polarization. Linear polarization is further divided into
Horizontal polarization
Vertical polarization
http://www.ccrs.nrcan.gc.ca/glossary/images/3104.gif
Horizontal polarization is the one in which wave propagates in x-direction and there is no propagation along y direction. A horizontally polarized wave is explained as a function of time T and E-field position
http://www.cfht.hawaii.edu/~manset/PolHoriz.gif
Yes! Need a quick fix? Our editors can polish your paper in hours—perfect for tight deadlines and top grades.
Figure 2.7: Horizontal Polarization
Vertical polarization is the one in which wave propagates in y-direction and there is no propagation along x direction. It can be written in mathematical form as
http://www.cfht.hawaii.edu/~manset/PolVert.gif
If there is equal phase difference between two waves then there is circular polarization, either clockwise or anticlockwise. Wave moving in clockwise rotation is said to be left circularly polarized and the one propagating in counterclockwise rotation is right circularly polarized. Mathematically it is defined as
E1 is the amplitude of wave linearly polarized in x direction.
E2 is the amplitude of wave linearly polarized in y direction.
Sure! We’ll sketch an outline for your approval first, ensuring the paper’s direction is spot-on before we write.
δ is the phase difference.
http://www.cfht.hawaii.edu/~manset/PolCirc.gif
If two waves have unequal amplitude or phase then there is elliptical polarization.
graphic 1
Figure 2.10 (a): Graphical Representation of Elliptical Polarization
http://www.nsm.buffalo.edu/~jochena/images/elliptic2.gif
Figure 2.10 (b): 3-D view of Elliptical Polarization
VSWR is the ratio between maximum voltage and the minimum voltage. If there is a difference between load impedance and input impedance then there occurs reflection which causes instructive interference and destructive interference. Instructive and destructive interference produces maximum and minimum amplitudes respectively. Mathematical Expression for VSWR is
Definitely! Our writers can include data analysis or visuals—charts, graphs—making your paper sharp and evidence-rich.
http://www.microwaves101.com/encyclopedia/images/VSWR/waves5.jpg
Figure 2.11: Different Voltage amplitudes at different distances
There are six different types of antennas [2].
Microstrip Patch Antenna
Lens Antenna
Wire Antenna
Array Antenna
Reflector Antenna
Aperture Antenna
Microstrip patch antennas fall into the category of printed antennas [4]. A radiating patch is printed on a grounded substrate which is usually feed via a transmission line or coaxial cable. Patch can be of any shape and size i.e. circular, square, triangular or rectangular. Amongst all printed antennas i.e. Dipole, Slots, Tapered Slots antennas; Microstrip Patch Antennas are most famous. They are small in size, light in weight and low power consuming. But their bandwidths are smaller and have low gain. They are easy to integrate, good radiation control and cost of production is low. To increase bandwidth many techniques are used that is introducing slots and slits etc. They are used commercially in radars, wireless communications, satellites and mobiles etc.
We’ve got it—each section delivered on time, cohesive and high-quality. We’ll manage the whole journey for you.
Figure 2.12: Microstrip patch Antenna
http://images.books24x7.com/bookimages/id_22121/fig188_01.jpg
Figure 2.13 (a): Rectangular Patch Antenna (b): Circular Patch Antenna
Microstrip Patch antennas are used in Microwave frequency range. They are used in arrays to increase the bandwidth and gain and for other purposes.
http://www.antennamagus.com/database/antennas/99/Stacked_microstrip_patch_array-antenna_design.png
Yes! UK, US, or Aussie standards—we’ll tailor your paper to fit your school’s norms perfectly.
Figure 2.14: Array of rectangular patch antennas
Lens antennas are used to convert spherical radiated waves into plane waves in specific direction by using a source with microwave lens. It actually stops the divergent radiated energy to spread in undesired directions. These are mostly used for the high frequencies. A lens antenna may be of concave or convex shape. They are directional antennas and can scan wider angles. In comparison to reflectors; their gain is 1 or 2 dB less. Lens antennas may be constructed of non-metallic dielectrics or of metallic (artificial) dielectrics [5].
http://www.xibao-electronictech.com/images/product/2/210Lens-Antenna.gifhttp://telecom.esa.int/telecom/media/img/largeimage/WaveguideLensAntennaPrjObj_404.jpg
Figure 2.15 (a): Lens Antenna Figure 2.15 (b): Wave guide Lens Antenna
Wire antennas consist of a simple wire that is used to radiate electromagnetic energy. These wire antennas can be of different shapes. Most commonly used are straight wire antennas i.e. dipoles, loops and helix. Beside half-wave dipoles and quarter wave monopoles, wires of arbitrary lengths are often used to form antennas. Wire antennas can be vertical, horizontal or sloppy with respect to the ground. They may be fed from centre, at end or anywhere in between. The wires can be thick or thin, the radiation of antenna depends upon the thickness of the wire. Antennas with length larger than λ/2 are called Long-wire antennas.
If your assignment needs a writer with some niche know-how, we call it complex. For these, we tap into our pool of narrow-field specialists, who charge a bit more than our standard writers. That means we might add up to 20% to your original order price. Subjects like finance, architecture, engineering, IT, chemistry, physics, and a few others fall into this bucket—you’ll see a little note about it under the discipline field when you’re filling out the form. If you pick “Other” as your discipline, our support team will take a look too. If they think it’s tricky, that same 20% bump might apply. We’ll keep you in the loop either way!
Figure 2.16 (a): Wire Antennas (a) Figure 2.16 (b): Dipole Circular loop
Array antennas are made up of more than one element basic of which is a dipole. Array antennas are the combination of radiating elements in such way that the radiation from these add up giving maximum or minimum radiation in a specific direction. They are used for higher directivity. They are made up of helices, dishes and other antennas. These elements are arranged to form broadside, end fire, collinear, driven and patristic arrays [5]. They are used in applications in which radiation cannot be achieved from single radiating element. They are low weight and low cost antennas. Examples of array antennas are Yagi-Uda,
http://www.tennadyne.com/images/tennlpdanavy.JPG
Figure 2.17: Log Periodic Dipole Array Antenna
Our writers come from all corners of the globe, and we’re picky about who we bring on board. They’ve passed tough tests in English and their subject areas, and we’ve checked their IDs to confirm they’ve got a master’s or PhD. Plus, we run training sessions on formatting and academic writing to keep their skills sharp. You’ll get to chat with your writer through a handy messenger on your personal order page. We’ll shoot you an email when new messages pop up, but it’s a good idea to swing by your page now and then so you don’t miss anything important from them.
They are widely used to modify the radiation pattern of radiating elements. They are classified as active and passive reflectors. The active reflectors have corners made up of plane surfaces and they include periscopic antennas, flat-sheet reflectors and corner-reflector antennas. An active reflector may have corner elliptical, parabolic or spherical shape. Active reflectors include parabolic dish, truncated parabola, pill box etc. Reflectors are simple in design, involve only one surface and obey simple laws of optics. The applications of reflector antennas are radars and other point to point communication systems [5].
http://www.sameercal.org/images/reflector_antenna.jpg
Figure 2.18: A co-secant Reflector Antenna
Aperture antenna is an important antenna for space communication. As the name suggests they consist of some cavity through which electromagnetic waves are transmitted or received. Apertures may be of any shape i.e. rectangular, circular or spherical. Larger the size of antenna larger will be the gain. Aperture antennas have to be placed carefully because they have narrow beam widths. Examples of aperture antennas include waveguides, reflectors horns, slots and lenses. Aperture antennas are commonly used in aircraft and spacecraft applications.
http://www.analyzemath.com/antenna_tutorials/introduction_3.gif
Figure 2.18: Horn Aperture Antenna
Spaceships, aircrafts and other military applications such as missiles where important constraints to consider are performance, manufacturing expenditures, smooth profile and ease of installation and now a day’s other systems such as wireless communication requires similar type of specifications to consider . And the basic component which is required by these listed applications for transmission of instructions or data and to receive these instructions on the receiver end is “antenna”. Hence to meet the requirements listed above e.g. smooth profile, cost and performance etc Microstrip antennas are used.
Microstrip antennas are diminutive profile, conformable to planar and non-planar surfaces, easy and cheap to construct using the up to date printed circuit technology. Microstrip antennas have very flexible behavior to polarization, resonant-frequency, and impedance and radiation pattern. They are also used to increase the bandwidth. They consist of a ground plane over which a substrate is mounted and the radiating patch is mounted on the substrate. Generally the ground plane and the dielectric substrate have equal length and width. The Microstrip antennas are illustrated by the width, length and the height of the dielectric substrate which is sandwiched in between the ground plane and the radiating patch
The structural configuration of micro strip patch antenna is shown in figure
Figure 3.1: Structural Configuration of Patch Antenna
It consist of a thin (t<< λ) metallic radiating patch on one side of the dielectric material (substrate) and a ground plane on the other side of it as shown in above figure, the metallic radiating patch can be made from different materials like copper, silver or gold etc. it can be designed in different shapes like rectangle, square, triangle, elliptical etc. Patch antennas are characterized by the length width and height of the dielectric substrate as shown in figure
Figure 3.2: Side View of Patch Antenna
The length of the patch is usually λ/3
To draw the width of the patch we use the formula
And the length of the patch can be drawn as:
To reduce the fringing effects we use the following formula
Here ∆L is the trimmed length from antenna.
Following feeding methods are most popular and are used with microstrip antennas
1. Microstrip line feed
2. Coaxial probe feed
3. Aperture coupled feed
4. Proximity coupled feed
5. Coplanar waveguide feed
These methods are either contacting or non-contacting. Contacting methods are those in which there is a direct contact between the transmission line and the radiating surface whereas in non-contacting methods, electromagnetic field coupling method is used to transfer the power.
In this feeding method, the line feed is conducting strip of small width as compared to the patch. It is the easiest feeding method; easy to fabricate and simple to model. The radiating strip is placed at radiating patch’s edge and it is of the same material that is used for patch. If length of the strip is greater than the wavelength, losses will be generated. It can be reduced if the strip line has a substrate with high dielectric constant and low weight, so that the fields are confined to the strip line. A line feed of dimensions 17x3mm is used to obtain 50Ω input resistance.
Figure 3.1: Patch with Microstrip Line Feed
In coaxial probe feeds, coax inner conductor is attached to the radiating patch while the other conductor is connected to the ground plane. It is used widely. Its fabrication is easy and has low spurious radiation that is radiation outside the band frequency. It is has narrow bandwidth and it is hard to model for thick substrate. Matching also becomes difficult for thicker substrate because of increase length of probe make it more inductive, its inductance effect can be reduced by using a series of capacitors.
Figure 3.2: Patch with coaxial probe feed
It is the non-contacting feed. The two substrates are separated by ground plane in it. The microstrip feed line is on the bottom side of the lower substrate there is a; whose energy is coupled to the patch through a slot on the ground plane which separates the two substrates. A material with higher dielectricity is used for bottom substrate therefore, by this arrangement independent optimization of the feed mechanism and the radiating element can be carried out.
For top substrate a thick, low dielectric constant material is used. The ground plane between the two substrates isolates the feed from the radiating element and minimizes the interference. The configuration is shown in the figure
Figure 3.3: Patch with aperture coupling feed
Matching is performed by controlling the width of the feed line and the length of the slot. Amongst all four techniques this is the hardest to fabricate and has narrow bandwidth. It is somehow easy to model and has moderate spurious radiation.
In this feeding method, microstrip line is placed between two substrates and the radiating patch is placed on the upper substrate. This coupling is capacitive in nature. This coupling has the largest bandwidth as high as 13%. It is easy to model and has low spurious radiation. Its fabrication is somehow difficult. However, length of the stub help in improving the bandwidth, and width-to-line ratio of the patch can be used to control the match. The coupling feed is shown
Figure 3.4: Patch with Proximity Coupling Feed
This feeding technique is used when patch antenna is used in microwave monolithic integrated circuits (MMIC). The coplanar feed is fabricated on a ground plane and coupling is achieved through a slot. This feeding method reduces the radiation from feed structure because of its unusual method of coupled slot. Since CPW (coplanar waveguide) has many advantages such as low radiation leakage, less dispersion and small mutual coupling between two adjacent lines, which is helpful to place circuit elements close together without adding an additional layer of substrate, using CPW as the feeding structure to excite the patch antenna through a slot has become very popular recently. In addition, CPW structure can maintain constant characteristic impedance while varying its geometry, which provides a better impedance matching possibility
Figure 3.5: Patch with Coplanar Waveguide Feed
On the basis of range of frequency bands, microstrip patch antennas can be categorized into three main classes which are:
antenna for narrow band applications
antenna for wide band applications
antenna for ultra wideband applications
A series of very short baseband pulses with time duration in nano-seconds that exist on ALL frequencies simultaneously. Pulse repetition frequency (PRF) can range from hundreds of thousands to billions of pulses/second. Very low power: 41dbm/MHz (FCC) and wide bandwidth: 3.110.6 GHz
Modulation techniques include
pulse-position modulation
binary phase-shift keying
And
others
Radio technology that modulates impulse based waveforms instead of continuous carrier waves
UWB could be used to Indoor, short-range communications for high data rates, OR Outdoor, long-range, but for very low data rates
UWB is a form of extremely wide spread spectrum where RF energy is spread over gigahertz of spectrum. Wider than any narrowband system by orders of magnitude. Power seen by a narrowband system is a fraction of the total.UWB signals can be designed to look like imperceptible random noise to conventional radios
Large fractional bandwidth leads to High processing gain and Multipath resolution and low signal fading. Fractional Bandwidth is the ratio of signal bandwidth (10 dB) to center frequency: Bf = B / FC = 2(Fh-Fl) / (Fh+Fl)
UWB benefits from basic information theory results when: Signal Bandwidth >> Data Rate .Power efficient low-order modulation can be used even for relatively high data rates.Data rates can scale independent of PRF by integrating bit intervals over multiple pulse intervals
Ultra-wide bandwidth provides robust performance in multipath environments .
Indoor
Within a room (LOS & NLOS)
Investigates the impact of
Distance
Rx/Tx antenna heights
Antenna polarization
C:mat_dirsuwblimitsindoor5.tif
Outdoor
Campus environment
Low altitude
Mobility
C:mat_dirsuwblimitsoutdoor5.tif
UWB Emission Limits for GPRs, Wall Imaging, & Medical Imaging Systems.
Operation is limited to law enforcement, fire and rescue organizations, scientific research institutions, commercial mining companies, and construction companies.
UWB Emission Limits for Thru-wall Imaging & Surveillance Systems
Ultra-short pulses
Baseband transmission
Low duty
Tags: APA Citation Format Assignment Help Online, Assignment Writers Australia for College Students, Buy essay USA, Write My Essay Fast - Plagiarism-Free AI Writing ToolYou Want The Best Grades and That’s What We Deliver
Our top essay writers are handpicked for their degree qualification, talent and freelance know-how. Each one brings deep expertise in their chosen subjects and a solid track record in academic writing.
We offer the lowest possible pricing for each research paper while still providing the best writers;no compromise on quality. Our costs are fair and reasonable to college students compared to other custom writing services.
You’ll never get a paper from us with plagiarism or that robotic AI feel. We carefully research, write, cite and check every final draft before sending it your way.