Looking for a similar answer, essay, or assessment help services?

Simply fill out the order form with your paper’s instructions in a few easy steps. This quick process ensures you’ll be matched with an expert writer who
Can meet your papers' specific grading rubric needs. Find the best write my essay assistance for your assignments- Affordable, plagiarism-free, and on time!

Posted: January 1st, 1970

Effect of Surface Area on Reaction Rate

Surface Area vs. Reaction Rate

How does the surface area of pure cane sugar cubes affect the rate of dissolution in water?

What Citation Styles Can You Use for My Essay?

Students often ask, “Can you write my essay in APA or MLA?”—and the answer’s a big yes! Our writers are experts in every style imaginable: APA, MLA, Chicago, Harvard, you name it. Just tell us what you need, and we’ll deliver a perfectly formatted paper that matches your requirements, hassle-free.

Chandler Hultine

 

Abstract

The purpose of this lab was to investigate how surface area affects the reaction rate of a substance in a solution. This lab was put together to find out how differentiating surface areas of pure cane sugar cubes would affect the rate of dissolution in water.

Is It Legal to Use Your Writing Service?

Absolutely, it’s 100% legal! Our service provides sample essays and papers to guide your own work—think of it as a study tool. Used responsibly, it’s a legit way to improve your skills, understand tough topics, and boost your grades, all while staying within academic rules.

The investigation was undertaken by using five different groups of sugar cubes, each group having a different surface area than the others. The cubes were submerged and stirred in a solution of water until they completely dissolved, and the time it that it took them each to dissolve was recorded. The longer the time it took for the cubes to dissolve, the slower the reaction rate, and vice versa.

The initial hypothesis, if the surface area of the cube increases, then the reaction rate of the dissolution of the cube in water will also increase because more of the cube will be exposed to the water which will allow for more collisions of particles to occur at a time, was accepted due to a positive correlation between dissolution times and surface area of cubes. The more broken up a cube was, the faster it tended to dissolve in water and vice versa, because the more broken up cubes had more surface area. (Abstract Words: 212)

 

How Much Does It Cost to Get a Paper Written?

Our pricing starts at $10 per page for undergrad work, $16 for bachelor-level, and $21 for advanced stuff. Urgency and extras like top writers or plagiarism reports tweak the cost—deadlines range from 14 days to 3 hours. Order early for the best rates, and enjoy discounts on big orders: 5% off over $500, 10% over $1,000!

Introduction

The overall aim of this lab is to investigate how surface area is related to reaction rate in terms of the dissolution rate of a substance in a solution. This lab will be experimenting with sugar cubes of the same volume, but different surface areas to see how exactly surface area affects the rate of dissolution.

How does the surface area of pure cane sugar cubes affect the rate of dissolution in water? If the surface area of the cube increases, then the reaction rate of the dissolution of the cube in water will also increase because more of the cube will be exposed to the water which will allow for more collisions of particles to occur at a time.3,6

With most things in life, size is a very important factor that people consider in many choices they make, whether it be deciding between the newest smartphones or burning wood chips versus entire logs in a fire.1 Seeing how size affects something is key when taking an item/idea and making it more effective. The purpose of this experiment is to see how the amount of surface area of a substance is related to the reaction rate when said substance is placed into a solution.5 This investigation is to see how the reaction rate of a substance can be either increased or decreased when placed into a solution.

Will My Use of This Service Stay Private?

Yes, totally! We lock down your info with top-notch encryption—your school, friends, no one will know. Every paper’s custom-made to blend with your style, and we check it for originality, so it’s all yours, all discreet.

Investigation

For the investigation, a variety of sources that related to how surface and dissolution/reaction rates are related. The [main] sources include but are not limited to:

  • Research on the topic done by NASA,
  • An excerpt from Ansel’s Pharmaceutical Dosage Forms and Drug Delivery Systems,
  • And experiment research from sciencebuddies.org titled Big Pieces or Small Pieces: Which React Faster?.

These sources have provided a great amount of background information, especially the article by NASA involving an explanation on the correlation between surface areas and reaction rates.

Materials

Do You Use AI to Write Papers?

No way—our papers are 100% human-crafted. Our writers are real pros with degrees, bringing creativity and expertise AI can’t match. Every piece is original, checked for plagiarism, and tailored to your needs by a skilled human, not a machine.

In order to complete this experiment, the following materials were required:

  • 25 Sugar cubes (any brand, just make sure all the same)
  • 1 Timer
  • 5 Beakers (250mL)
  • 1 Pipet
  • 1 Thermometer
  • 1 Knife
  • 1 Paper towel or piece of paper (cut sugar cubes on)
  • 1 Hammer or weighted object (to crush one of the sugar cubes into a powder like state)
  • 1 Pencil and paper (to record observations)
  • 1 Stirring device of any kind (like a chopstick)

Constants

Water source, brand of beakers, size of beakers, amount of water, stirring device, type of sugar cube, temperature of water, temperature of surroundings, temperature of beakers, cuts in sugar cubes, pipets, timer, thermometer

Procedure

Why Choose You for Research Papers?

We’re the best because our writers are degree-holding experts—Bachelor’s to Ph.D.—who nail any topic. We obsess over quality, using tools to ensure perfection, and offer free revisions to guarantee you’re thrilled with the result, even on tight deadlines.

  1. Divide the 25 sugar cubes into groups of five so that each group has five sugar cubes.
  2. Leave the first group untouched. This will be the group that has the smallest surface area.
  3. Take the second group of five sugar cubes and, using the knife, cut each cube in half.
  4. Take the third group of sugar cubes and cut each cube into quarters (cut each one in half then cut the halves in half).
  5. The fourth group will be cut into eighths.
  6. The last group of sugar cubes will be completely ground up into a powder. This will be the group with the greatest surface area.
  7. Once all the cubes are cut up and put into groups, fill up each of the 5 beakers with water to the 200mL mark. Use a pipet to make the measurement precise.
  8. Wait 30 minutes after filling the beakers with water to ensure they are all room temperature.
  9. Begin with the uncut sugar cube. With the timer and stirring device at hand, place the uncut cube into the water-filled beaker and begin the timer and stirring as soon as the sugar cube is placed in the water.
  10. Stir the sugar cube in the water until it completely dissolves/disappears in the water.
  11. Stop the timer as soon as the sugar cube completely dissolves.
  12. Record the results on a pre-made data table.
  13. Repeat steps 6 to 9 for all variants of the sugar cube for one group.
  14. Repeat the entire experiment for all 5 groups of sugar cubes, making sure that one group is finished before moving onto another group. DO NOT finish dissolving all of the sugar cubes of one specific surface area size and then moving onto another set of the same surface area sized cubes; make sure the experiment is carried out group by group. Treat each group with the five different surface area sized sugar cubes as an individual experiment. This way a total of 5 experiments will be carried out.

Data

Trial 1

Size of Sugar Cube

Time (seconds) for dissolution

Who’s Writing My College Essays?

Our writers are top-tier—university grads, many with Master’s degrees, who’ve passed tough tests to join us. They’re ready for any essay, working with you to hit your deadlines and grading standards with ease and professionalism.

Full

412

Half

217

Are Your Papers Original?

Always! We start from scratch—no copying, no AI—just pure, human-written work with solid research and citations. You can even get a plagiarism report to confirm it’s 95%+ unique, ready for worry-free submission.

Quarter

123

Eighth

82

Can You Match Any Citation Style?

You bet! From APA to IEEE, our writers nail every style with precision. Give us your guidelines, and we’ll craft a paper that fits your academic standards perfectly, no sweat.

Powder

51

Trial 2

Size of Sugar Cube

Can I Update Instructions Mid-Order?

Yep! Use our chat feature to tweak instructions or add details anytime—even after your writer’s started. They’ll adjust on the fly to keep your essay on point.

Time (seconds) for dissolution

Full

401

Half

How Do I Get an Essay Written?

Easy—place your order online, and your writer dives in. Check drafts or updates as you go, then download the final paper from your account. Pay only when you’re happy—simple and affordable!

202

Quarter

150

Eighth

How Fast Can You Handle Urgent Deadlines?

Super fast! Our writers can deliver a quality essay in 24 hours if you’re in a pinch. Pick your deadline—standard is 10 days, but we’ll hustle for rush jobs without skimping.

77

Powder

58

Trial 3

Size of Sugar Cube

Can You Tackle Complex Essay Topics?

Definitely! From astrophysics to literary theory, our advanced-degree writers thrive on tough topics. They’ll research deeply and deliver a clear, sharp paper that meets your level—high school to Ph.D.

Time (seconds) for dissolution

Full

426

Half

236

How Do You Meet My Professor’s Standards?

We tailor your paper to your rubric—structure, tone, everything. Our writers decode academic expectations, and editors polish it to perfection, ensuring it’s grade-ready.

Quarter

120

Eighth

68

What’s Your Editing Process?

Upload your draft, tell us your goals, and our editors will refine it—boosting arguments, fixing errors, and keeping your voice. You’ll get a polished paper that’s ready to shine.

Powder

47

Trial 4

Size of Sugar Cube

Time (seconds) for dissolution

Can You Suggest Paper Topics?

Sure! Need ideas? We’ll pitch topics based on your subject and interests—catchy and doable. Pick one, and we’ll run with it, or tweak it together.

Full

455

Half

241

Quarter

117

Eighth

Do You Offer Rush Revisions?

Yes! If you need quick edits, our team can turn it around fast—hours, not days—tightening up your paper for last-minute perfection.

81

Powder

55

Trial 5

Size of Sugar Cube

Time (seconds) for dissolution

Can You Provide Outlines First?

Absolutely! We’ll draft an outline based on your topic so you can approve the plan before we write—keeps everything aligned from the start.

Full

423

Half

221

Quarter

136

Eighth

71

Can You Include Data Analysis?

You bet! Need stats or charts? Our writers can crunch numbers and craft visuals, making your paper both sharp and professional.

Powder

52

Mean time for full sugar cube: 423.4

Mean time for half sugar cube: 223.4

Mean time for quarter sugar cube: 129.2

Mean time for eighth sugar cube: 75.8

Mean time for powder sugar cube: 52.6

Results and Discussion

The results of this experiment show that a more broken up sugar cube resulted in a faster dissolution rate of the cube in water, and vice versa when there were longer rates of dissolution for sugar cubes that were less broken up. Since the purpose of this experiment was to find the relationship between surface area and reaction rate, this experiment was successful.

Trial 1 data shows the times nearly being cut in half as the sugar cube becomes more crushed up, except for the transition between the powder and sugar cube broken up into eighths.

How Do You Handle Long-Term Projects?

We break it down—delivering each part on time with consistent quality. From proposals to final drafts, we’re with you all the way.

Trial 2 data also shows the time between each tier of sugar cubes being split in half as the surface area increases. However, this is not true for the half-broken up and quarter-broken up sugar cubes. The time in seconds for dissolution rate for those two sugar cubes only had a difference of ~50 seconds, which is not even close to half. This makes me wonder what happened during that part of the lab, because the data does not follow the conventional trend like the rest of my experiment results. A possible source of error for this trial was that I did not collect all of the sugar from the sugar cube after it was cut. When all of the sugar is not completely collected, the data can become skewed because not all of the sugar cube is actually being dissolved in the solution.

Trials 3, 4, and 5 all show around the similar results. The times are very close to each other for each size sugar cube that was dissolved. Trials 3, 4, and 5 are also relatively close to the data shown in trial 1. This shows that there was a little less precision that went into trial 2.

What does all of this data mean? Well for starters, the data and experiment are relevant for any other experiment out there that tries to determine the relation between surface area and reaction rate. The reason for this is because whenever different rates of reaction are being tested for, a change in the surface area of a reactant/variable will have an effect on the rate of reaction, because the alteration of surface area means that the frequency of particle collisions is altered as well.1,3,7 For example, if the surface area (of an object that is about to be placed in a solution) is doubled, that means there will be twice as much area for particles to potentially interact with on the object as compared to the original object that has the original surface area.3 This is true for all aspects of reaction rate; surface area plays a substantial role whenever reaction rate is tested for.1,3

Conclusion

Initial Hypothesis: If the surface area of the cube increases, then the reaction rate of the dissolution of the cube in water will also increase because more of the cube will be exposed to the water which will allow for more reaction between water and sugar cube to occur at one time.3,6

Can You Write for Global Standards?

Yep! Whether it’s UK, US, or Australian rules, we adapt your paper to fit your institution’s style and expectations perfectly.

There was a strong, positive correlation between the data that was collected and the initial hypothesis. From looking at the data, it is apparent that the cubes that were more broken up that had more surface area dissolved much faster than a cube that was less broken up and did not have as much surface area. The data shows that more surface area does mean faster reaction rate, and vice versa.3 The powder/completely crushed up sugar cube had the quickest time for dissolution in water which was on average 52.6 seconds, whereas the full sugar cube that was untouched and had the smallest amount of surface area had the slowest time for dissolution which was on average 423.4 seconds. Therefore, the hypothesis is accepted with the support of the data. The larger cubes that were not cut up took the longest to completely dissolve, whereas the finely crushed up cubes dissolved quickest.5

The accuracy of this experiment could be slightly improved in the future by adapting a more consistent and reliable method of stirring the sugar cubes around when they are placed in water. This would improve the accuracy of the time that each cube takes to completely dissolve in the solution of water.

Bibliography

Reaction Rates. Publication. NASA, n.d. Web. 1

Allen, Loyd V., Nicholas G. Popovich, Howard C. Ansel, and Howard C. Ansel.Ansel’s Pharmaceutical Dosage Forms and Drug Delivery Systems. Philadelphia: Lippincott Williams & Wilkins, 2005. Print. 2

Is there a possibility of plagiarism in my completed order?

We write every paper from scratch just for you, and we get how important it is for you to feel confident about its originality. That’s why we double-check every piece with our own in-house plagiarism software before sending it your way. This tool doesn’t just catch copy-pasted bits—it even spots paraphrased sections. Unlike well-known systems like Turnitin (used by most universities), we don’t store or report anything to public databases, so your check stays private and safe. We stand by our plagiarism-free guarantee to ensure your paper is totally unique. That said, while we can promise no plagiarism from open web sources or specific databases we check, no tech out there (except Turnitin itself) can scan every source Turnitin indexes. If you want that extra peace of mind, we recommend running your paper through WriteCheck (a Turnitin service) and sharing the report with us.

Clark, Jim. “The Effect of Surface Area on Rates of Reaction.”The Effect of Surface Area on Rates of Reaction. N.p., n.d. Web. 06 May 2013. 3

Bayer HealthCare, 2005. “Temperature and Rate of Reaction,” Bayer HealthCare, LLC [accessed May 8, 2007]http://www.alka-seltzer.com/as/experiment/student_experiment1.htm. 4

Olson, Andrew. “Big Pieces or Small Pieces: Which React Faster?”Big Pieces or Small Pieces: Which React Faster?Science Buddies, n.d. Web. 06 May 2013. 5

Kenneth Connors, Chemical Kinetics, 1990, VCH Publishers, pg. 14 6

When will my order be assigned to the writer?

The moment you place your order, we jump into action to find the perfect writer for you. Usually, we’ve got someone lined up within an hour. Sometimes, though, it might take a few hours—or in rare cases, a few days—if we need someone super specialized. If no writers from your chosen category are free, we’ll suggest one from a lower category and refund the difference if you’d paid extra for that option. Want to keep tabs on things? You can always peek at your order’s status on your personal order page.

Isaacs, N.S., “Physical Organic Chemistry, 2nd edition, Section 2.8.3, Adison Wesley Longman, Harlow UK, 1995. 7

(Bibliography Words: 126)

Tags: Buy essay USA, Custom Dissertation Writing Services for PhD Students, UK - Cheap Essay Writing Service, Write My Essay Fast - Plagiarism-Free AI Writing Tool

Order|Paper Discounts

Why Choose Essay Bishops?

You Want The Best Grades and That’s What We Deliver

Top Essay Writers

Our top essay writers are handpicked for their degree qualification, talent and freelance know-how. Each one brings deep expertise in their chosen subjects and a solid track record in academic writing.

Affordable Prices

We offer the lowest possible pricing for each research paper while still providing the best writers;no compromise on quality. Our costs are fair and reasonable to college students compared to other custom writing services.

100% Plagiarism-Free

You’ll never get a paper from us with plagiarism or that robotic AI feel. We carefully research, write, cite and check every final draft before sending it your way.