Looking for a similar answer, essay, or assessment help services?

Simply fill out the order form with your paper’s instructions in a few easy steps. This quick process ensures you’ll be matched with an expert writer who
Can meet your papers' specific grading rubrics. Find the best write my essay assistance for your assignments- Affordable, plagiarism-free, and on time!

Posted: July 18th, 2021

C, Si, Ge Doped (6,3) Chiral BNNTs: A Computational Study

The C, Si, Ge Doped (6,3) Chiral BNNTs: A Computational Study

  • Mohammad Reza Zardoost a,*, Behnam Dehbandib , Marjan Dehbandib

 

Can You Help with Assessment Editing?

Yes, our expert editors polish your assessment, enhancing clarity, structure, and academic rigor while preserving your voice. We refine grammar, flow, and formatting to meet your institution’s standards. Upload your draft for a professionally edited, submission-ready paper. Trust our services for a flawless assessment!

Abstract: Electronic structure properties including bond lengths, bond angles, dipole moments (µ), energies, band gaps, NMR parameters of the isotropic and anisotropic chemical shielding parameters for the sites of various atoms were calculated using density functional theory for C , Si , Ge doped (6,3) Chiral BNNTs. The calculations indicated that average bond lengths were as: Ge-N > Si-N > C-N and Ge-B > Si-B > C-B. The dipole moments for C, Si, and Ge doped (6, 3) Chiral BNNTs structures show fairly large changes with respect to the pristine model.

Keywords: NMR, Nanotube, DFT, Dipole moment

1. Introduction

Since the early times that carbon nanotube (CNT) was discovered by Iijima [1], the physical, chemical and structural properties and applications of this material have been investigated extensively [2–4]. The properties of CNTs are mostly dependent on the tubular diameter, doped atoms in the structure and chirality, which make their synthesis for the specific purposes difficult. A lot of studies have been done in the investigation of stable structures of non-carbon based nanotubes, among them boron-nitride nanotubes (BNNTs) have a great importance [5]. The stable tubular structure of BNNT was initially found by calculations [6] and later was successfully synthesized [7]. After this time, a large growing number of experimental and theoretical studies, specifically ab initio calculations on carbon-, silicon- and germanium substituted BN nanotubes have been performed on the electronic structures of the BNNTs [8–11]. The results show that C, Si and Ge replacements can induce spontaneous magnetization with different deformation in the nanotube [12].

Do You Offer Support for Assessment Presentations?

We provide guidance to prepare for your assessment presentation, including crafting responses and visual aids. Our experts help you anticipate questions and refine your delivery. This ensures confidence and clarity during your presentation. Contact us for tailored presentation support!

At the present time, nuclear magnetic resonance (NMR) spectroscopy [13-14] is the best technique to study the electronic structure properties of materials. Doping of Chiral BNNTs by C, Si, Ge atoms changes their properties and so the interactions of the nanotube and foreign atoms or molecules. (see Fig. 1). In this work we studied the electronic structure properties, including bond lengths, bond angles, dipole moments (µ), energies, band gaps, and NMR parameters in the C, Si, Ge doped Chiral BNNTs structures.

a b c d e f g

2. Computational methods

All calculations were performed using Gaussian 98 computational package [15] with density functional theory (DFT) method using Becke’s three-parameter hybrid exchange functions with the correlation functions of Lee, Yang, Parr (B3LYP) [16,17] using 6-31G (d) basis set [18]. Previously it has been found that the calculated NMR parameters at the B3LYP and B3PW91 levels have a good agreement with the experiment [19]. It is shown that B3LYP gives reasonable and even accurate band gap values for nanotubes [19] so this function is chosen for band gap calculations.

Can You Assist with Literature Reviews for Assessments?

Yes, we craft comprehensive literature reviews, synthesizing relevant sources to support your assessment’s research. Our writers ensure clarity, depth, and proper citation in your preferred style. Provide your topic or sources for a customized review. Order now for a high-quality literature review!

In the present study, we considered a pristine (6,3) chiral BNNTs of diameter 6.6 Å and 10.1 Å length. This BNNT model consists of 42 Boron, 42 Nitrogen and 18 hydrogens (B42N42H18) B and N sites of this BNNT are doped by C, Si, Ge (see Fig. 1).

We have seven models, namely pristine (Fig. 1a), or with a B or N atom doped by C, i.e., the B-C-B or N-C-N model (Fig. 1b, c), doped by a Si atom, i.e., the B-Si-B or N-Si-N model (Fig. 1d, e), doped by a Ge atom, i.e., the B-Ge-B or N-Ge-N model (Fig. 1f, g). We investigated the influence of the C, Si, and Ge doping on the properties of the (6,3) Chiral BNNTs. The hydrogenated models of the pristine (6,3) Chiral BNNTs and the three atoms doped models of BNNTs consisted of 102 atoms with formulas of B42N42H18 (pristine), CB41N42H18 and CB42N41H18 (B-C-B or N-C-N model), SiB41N42H18 and SiB42N41H18 (B-Si-B or N-Si-N model), GeB41N42H18 and GeB42N41H18 (B-Ge-B or N-Ge-N model). The calculated CS tensors in the principal axis system (PAS) with the order of σ33 > σ22 > σ11 [20] for C, Si, and Ge doping for the investigated models of the (6,3) Chiral BNNTs were converted into measurable NMR parameters (isotropic chemical shielding (CSI) and anisotropic chemical shielding (CSA) parameters) using Eqs. (1) and (2) [23], summarized in Tables 3-6.

CSI(ppm)=11+ σ22+ σ33) (1)

CSA(ppm)= σ3311+ σ22) (2)

For NQR parameters, computational calculations do not directly detect experimentally measurable NQR parameters, nuclear quadrupole coupling constant (CQ), and asymmetry parameter (). Therefore, Eqns. (3) and (4) are used to convert the calculated EFG (electric field gradient) tensors in the principal axis system (PAS) with the order of |qzz| > |qyy| > |qxx| to their proportional experimental parameters; CQ is the interaction energy of nuclear electric quadrupole moment () with the EFG tensors at the sites of quadrupole nuclei (Nuclei with nuclear spin angular momentum greater than >1/2), but the asymmetry parameter () is a measure of the EFG tensors, which describes the deviation from tubular symmetry at the sites of quadrupole nuclei. The standard Q value (Q (11B) = 40.59 mb) reported by Pyykkö [21] is used in Eq. (3). The NQR parameters of 11B nuclei for the investigated models of the (6,3) BNNTs are summarized in Table 7.

Do You Provide Statistical Analysis for Assessments?

We offer expert statistical analysis, using tools like SPSS or R to support your assessment’s data-driven arguments. Our writers present results clearly and accurately to strengthen your research. Provide your data or let us source it for you. Enhance your assessment with our professional analysis services!

(3)

(4)

3. Results and discussion

3.1. Structures of the (6,3) Chiral BNNTs

The structural properties consisting of the B-N bond lengths, bond angles, dipole moments (µ), energies, and band gaps for the investigated models of the (6,3) Chiral BNNTs are given in Table 1 and Table 2. R1, R2, and R3 are B-X-B and N-X-N bond lengths (doped atom and its neighbors). α, β, and γ are B-X-B and N-X-N angles. There are Six forms of C, Si, Ge doped Chiral BNNTs for the (6,3) Chiral model.

Can You Help with Assessment Methodology?

Yes, we craft robust methodology sections, detailing your research approach with academic precision. Our writers ensure alignment with your study’s objectives and institution’s guidelines. Specify your requirements for a tailored methodology section. Trust our services for a strong, scholarly assessment!

These calculations indicated that the average of the (X = C, Si, Ge) bond lengths of the B-X-B and N-X-N models is larger than those the pristine models. The reason seems to be increasing of atomic radius going from carbon to Ge.

The bond angles produce some structural deformations that are responsible for deformation in structure by changing the doped atom size respect to carbon. For the B-X-B and N-X-N (X = C, Si, Ge) models, the diameter values are larger than those the pristine models. It has worth to be noted that the significant changes of geometries are just for those atoms placed in the nearest neighborhood of X atom and those of other atoms almost remained unchanged.

3.2. Energy band structure and density of states

Table2. Energy, LUMO, HOMO, LUMO-HOMO gap, dipole moment μ, and electronegativity (χ) of the studied structures at B3LYP/6-31G(d).

The total densities of states (DOS) of these tubes are presented in Fig. 2. As can be seen from Fig. 2, the calculated HOMO-LUMO gap (band gap) of the (6,3) Chiral BNNTs is 6.2 (eV) and the calculated band gaps of the C , Si , Ge doped models molecular orbital’s are 3.5,5.8 , 5.0 , 5.0 , 5.5 and 5.0 (eV) respectively (See Table 2). Doping of C, Si, and Ge in these tubes causes significant changes in the gaps of the DOS plots. In comparison with the pristine model, the band gaps of these models are reduced that increase their electrical conductance. These results indicated that the doping of C, Si, Ge atom by B, N atoms B-X-B and N-X-N model (X=C, Si, Ge) has more influence on the band gap of the Chiral BNNTs (see Table 2). By increasing atomic number and size polarizability increases that enhances dipole moment. Dipole moments (µ) of the C, Si, Ge doped Chiral BNNTs structures (Fig. 1) indicate slightly changes with respect to the pristine model.

Do You Offer Assessment Writing for Non-Native Speakers?

Yes, we tailor assessment services for non-native English speakers, ensuring clarity and academic quality. Our writers adapt to your language proficiency while meeting institutional standards. We make complex ideas accessible and professional. Order now for ESL-friendly assessment support!

3.3. NMR parameters of the (6,3) Chiral BNNTs

The NMR parameters for the investigated models of the (6,3) Chiral BNNTs are tabulated in Table 3, 4, 5 and Table 6. In the pristine model of the (6,3) Chiral BNNTs, there are 42 B atoms and 42 N atoms in the considered model and the NMR parameters are separated into five layers and six Columns, which means that the CS parameters for the atoms of each layer and Column have equivalent chemical environment and electrostatic properties. In Fig. 1b,c,d,e ,f,g the B and N atoms has been replaced by the C, Si, Ge atoms.

Table 3 Isotropic shielding parameters of the studied structures at B3LYP/6-31G(d) The calculated results in Table 3 indicate that doping C, Si, and Ge slightly changes the NMR parameters of the various B and N atoms in (Fig.1b–g) of the Si, Ge, C doped(6,3) Chiral SWBNNTs except for the N25 and N27 atoms for which the changes are significant. Because among the atoms of (Fig.1b–e) B–X model (X= C, Si, Ge), the N25 and N27 atoms are the nearest neighbors of the C, Si, and Ge atoms; hence, both the CSI and CSA parameters show the most significant changes due to the C, Si, Ge doping. Also, changes in the CSI parameters of the N10 and N12 atoms, which are the next nearest neighbors of the C, Si, Ge atoms, are also notable. There are differences between the properties of the electronic structures of C, Si, Ge atoms.

Comparison of the calculated NMR parameters in (Fig. 1b–g) indicates that the properties of the electronic structure of the Ge doped (6,3) Chiral SWBNNTs are more influenced than those of the Si–N model, where the N atom is doped by the Si atom. We studied the electronic energies of the models. The changes in the NMR parameter due to the C, Si, and Ge doping are more significant for the N–Si, N–Ge, N-C models with the pristine model.

Can You Meet Tight Assessment Deadlines?

We prioritize urgent assessment orders, delivering quality sections or drafts within tight timelines, even as short as 48 hours. Our expert writers maintain high standards under pressure. Specify your deadline in the order form for prompt delivery. Trust us for fast, reliable assessment help!

 

3.2. NQR parameters

The 11B NQR parameters (ηQ and CQ) in the geometrically optimized SWBNNT models were calculated from the EFG tensors. The results are tabulated in Table 7. A quick look at the results reveals that the calculated NQR parameters are not similar for various nuclei; therefore, the electrostatic environment of BNNT is not equivalent in length in all BNNT models. Since, in contrast with CNTs, the ends of BNNTs are different, the NQR values decrease from each end to the opposite end of the chiral model. It was proved before that the end nuclei in the SW-BNNTs are crucial to their growth and also field emission properties [22, 23]. Since no experimental NQR data for BNNTs are available in the literature, the tables do not include any reference experimental data for the calculated results. B17 and B46 in all models have the largest CQ that states greater orientation of the EFG tensor eigenvalues along the z-axis of the electronic distribution at the sites of the 11B17 and 11B46 nuclei. The electrostatic environments of atom B17 and B46 are stronger than in the other layers along the length of the tube. The largest change in CQ is due to B46, located in the layer of doped atoms, because doping changes the geometrical parameters and hence the electronic behavior of atoms.

Table 8 The 11B NQR parametersThe highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) in the pristine, and C–X (X=B, N) models are plotted in Fig. 3. For the pristine model, HOMO and LUMO are uniformly distributed throughout the B–N bonds, whereas, in the C–X model (X=B, N) models, HOMO and LUMO are highly localized at the doped regions. (see Fig. 3) In comparison with the pristine model, band gaps of the C, Si, and Ge doped models increased their electrical conductance.

Do You Provide Custom Assessment Samples?

Yes, we offer custom assessment samples tailored to your subject upon request, showcasing our quality. Free samples are also available on our website for various fields. These reflect our expertise in areas like Business and Law. Request a sample to see our high standards!

Conclusion

We studied the electronic structure properties including bond lengths, bond angles, dipole moments (μ), energies, band gaps, the NMR parameter of the six C, Si, Ge doped SWBNNTs models by means of DFT calculations. The calculated results indicated that the average Ge-B bond lengths of the Ge-N model are larger than those the pristine and the C–B, C–N, Si–B, Si-N and Ge-B models: Ge–N>Si–N>Ge–B>Si–B>C–N>Pure>C-B.

The values of dipole moments (μ) of the six C, Si, Ge doped SWBNNTs are Ge–N> Si–N> Ge–B> C–N> Pure> Si–B > C-B. In comparison with the pristine model, the band gaps of the six C, Si, Ge doped models are reduced and their electrical conductance increased as: C–B > Si–B = Si–N = Ge–N > Ge–B > C-N. The NMR values for the B and N atoms directly bound to the C, Si, and Ge in the C, Si, and Ge doped models are significantly changed. Comparison of the calculated NMR parameters in the X–B and X-N (X=C, Si, Ge) models shows that the properties of the electronic structure of the X-B doped (6,3) Chiral SWBNNTs are more influenced than X–N model in Fig. 1b–g. The electronic sites of the B and N atoms in X-N model have greater effects than X-B model in Fig. 1 in the C, Ge, and Si doping processes.

References

How Do You Handle Assessment Feedback?

We incorporate your professor’s feedback into free revisions within 7 days to improve your assessment. Our writers address comments to enhance structure, content, and quality. Submit feedback via your account for quick adjustments. Trust us to refine your assessment effectively!

[1]S. Iijima, Single-shell carbon nanotubes of 1-nm diameter, Nature 354 (1991) 56.

[2]H. Terrones, F. Lopez-Urias, E. Muooz-Sandoval, J.A. Rodriguez-Manzo, A. Zamudio, A.L. Elias, M. Terrones, Magnetization of carbon-doped MgO nanotube, Solid State Sci. 8 (2006) 303.

[3]F. Moreau, R. Langlet, P.h. Lambin, P.P. Kuzhir, D.S. Bychanok, S.A. Maksimenko, Dielectric properties of a novel high absorbing onion-like-carbon based polymer composite, Solid State Sci. 11 (2009) 1752.

[4]R. Joshi, J. Engstler, P. Haridoss, J.J. Schneider, Formation of carbon nanotubes from a silicon carbide/carbon composite,Solid State Sci. 11 (2009) 422.

Can You Write Assessments for Technical Fields?

We specialize in technical fields like IT, Engineering, and Sciences, delivering precise, data-driven assessments. Our expert writers ensure accuracy and adherence to academic standards. Specify your technical requirements for a tailored paper. Order now for subject-specific assessment excellence!

[5]A. Loiseau, F. Willaime, N. Demoncy, N. Schramcheko, G. Hug, C. Colliex, H. Pascard, Mathematical modeling for the simulation of heavy metal ions, Carbon 36 (1998) 743.

[6]X. Blase, A. Rubio, S.G. Louie, M.L. Cohen, Stability and band gap constancy of boron-nitride nanotubes, Eur. Phys. Lett. 28(1994) 335.

[7]N.G. Chopra, R.J. Luyken, K. Cherrey, V.H. Crespi, M.L. Cohen, S.G. Louie, A. Zettl, Boron-nitride nanotubes, Science 269 (1995) 966.

[8]L. Guo, R.N. Singh, Catalytic growth of boron nitride nanotubes using gas precursors, Physica E 41 (2009) 448.

Do You Offer Assessment Proofreading Services?

Yes, our proofreading services ensure your assessment is polished, error-free, and formatted to academic standards. We enhance clarity, grammar, and citation accuracy while preserving your voice. Upload your draft for a professionally proofread paper. Trust our services for a flawless final product!

[9]B. Fakrach, A. Rahmani, H. Chadli, K. Sbai, J.-L. Sauvajol, Raman spectrum of single-walled boron nitride nanotube, Physica E 41 (2009) 1800.

[10]M. Mirzaei, An electronic structure study of O-terminated zigzag BN nanotubes, Physica E 41 (2009) 883.

[11]M. Giahi, M. Mirzaei, Computational NQR study of a boron nitride nanocone, Z. Naturforsch. A 64 (2009) 251.

[12]J. Wu, W. Zhang, Chem. Phys. Lett. 457 (2008) 169.

[13]R. R. Zope, B.I. Dunlap, Phys. Rev. B. 72 (2005) 45439-6.

Can You Help with Assessment Abstracts?

We craft concise, compelling assessment abstracts that summarize your research effectively. Our writers ensure clarity and alignment with your study’s objectives. Specify your requirements for a tailored abstract. Order now for a professional, impactful assessment abstract!

[14]F.A. Bovey, Nuclear Magnetic Resonance Spectroscopy, Academic Press, San Diego, 1988.

[15]M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheese- man, V.G. Zakrzewski, J.A. Montgomery Jr., R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, A.G. Baboul, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W.Wong, J.L. Andres, C. Gonzalez, M. Head-Gordon, E.S. Replogle, J.A. Pople, GAUSSIAN 98, Gaussian, Inc., Pittsburgh, PA, 1998.

[16]A.D. Becke, J. Chem. Phys. 98 (1993) 5648-5652.

[17]C. Lee, W. Yang, R. G. Parr, Phys. Rev. B. 37 (1988) 785.

[18]G. A. Petersson and M. A. Al-Laham, J. Chem. Phys. 94, 6081 (1991).

Do You Support Assessment Revisions After Submission?

Yes, we offer revisions post-submission to address feedback or enhance your assessment’s quality. Our writers refine your paper to meet academic expectations. Submit feedback via your account for prompt adjustments. Contact us to improve your submitted assessment!

[19]M. Mirzaei, N.L. Hadipour, J Phys Chem A. 110 (2006) 4833-4838.

[20]Y. Matsuda, J. Tahir-Kheli and W. A. Goddard, The Journal of Physical Chemistry letters 1 (2010) 2946.

[21]R.S.Drago,Physical Methods for Chemists,second ed. ,Saunders College, Florida, 1992.

[21]P. Pyykkö, Mol. Phys. 99 (2001) 1617.

Can You Assist with Assessment Formatting?

We provide expert formatting in APA, MLA, Harvard, Chicago, and more for your assessment. Our writers ensure proper margins, fonts, citations, and table of contents. Your paper will meet all academic formatting standards. Order now for a polished, submission-ready assessment!

[22] S. Hou, Z. Shen, J. Zhang, X. Zhao, Z. Xue, Chem. Phys. Lett. 393 (2004) 179.

[23] E. Bengu, L.D. Marks, Phys. Rev. Lett. 86 (2001) 2385.

Tags: Assignment: Write a page essay, AU Assessments, Create a 2-4 page resource, Create powerpoint include harvard referencing

Order|Paper Discounts

Why Choose Essay Bishops?

You Want The Best Grades and That’s What We Deliver

Top Essay Writers

Our top essay writers are handpicked for their degree qualification, talent and freelance know-how. Each one brings deep expertise in their chosen subjects and a solid track record in academic writing.

Affordable Prices

We offer the lowest possible pricing for each research paper while still providing the best writers;no compromise on quality. Our costs are fair and reasonable to college students compared to other custom writing services.

100% Plagiarism-Free

You’ll never get a paper from us with plagiarism or that robotic AI feel. We carefully research, write, cite and check every final draft before sending it your way.

How it works

When you decide to place an order with Assessment Essays, here is what happens:

Complete the Order Form

You will complete our order form, filling in all of the fields and giving us as much detail as possible.

Assignment of Writer

We take a look at your order and pair it with a writer who’s got just the right skills for the job—they’ll start fresh and make it their own.

Order in Production and Delivered

You can chat directly with your writer while they work, and once you get the final draft, you can give it a thumbs-up or ask for a few tweaks.

Giving us Feedback (and other options)

We want to know how your experience went. Feel free to drop a quick review and give a shoutout to your favorite writer for other students to check out.